
OIIC FILE COPE

AD-A228 726

Parallel Incremental Compilation

Neal M Gafter

Technical Report 349
June 1990

DTIC
ELECTE

SNOV7 1990

UNIVERSITY OFROC R
COMPUTER SCIENCE

DISTTION STATEMENT A

Approved for public release;
Distribution Unlimited

90 V. 0~ O5

Parallel Incremental Compilation

by

Neal M Gafter

Submitted in Partial Fulfillment

of the

Requirements for the Degree

DOCTOR OF PHILOSOPHY

Supervised by Thomas J. LeBlanc

Department of Computer Science

University of Rochester

Rochester, New York

June 1990

REPORT DOCUMENTATION PAGE -READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT°S CATALOG NUMBER
349

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

.Parallel Incremental Compilation Technical Report
6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(a) 8. CONTRACT OR GRANT NUMBER(s)

Neal M. Gafter N00014-82-K0193

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

Computer Science Department
734 Computer Studies Bldg.
University of Rochester. Rochester. NY 14627

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Defense Advanced Research Project Agency June 1990
1400 Wilson Blvd. 13. NUMBER OF PAGES

Arlinaton, VA 22209 113
14; MONITORING AGENCY NAME & ADDRESS(If~different from Controlling Office) 15. SECURITY CLASS. (of this report)
Office of Naval Research
Information Systems Unclassified.
Arlington, VA 22217 15a. DECLASSIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTrON7STATEMENT (of thi Report)

,istribution for this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It different from Re,)ort)

1S. SUPPLEMENTARY NOTES

None.

19. KEY WORDS (Continue on reveree side if necessary and Identify by block number)

parallel incremental compilation; parallel algorithm complexity; parsing;
semantic analysis; upward remote aggregate Attribute grammars

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

(Oer

DD I JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE Unclassified.
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

20. ABSTRACT

The timeit takes~to compile a large program has ben a bottleneck in the software development
process. When an interactive programming environment with an incremental compiler is used,
compilation speed becomes even more important, but existing incremental compilers are very
slow for some types of program changes. 'We describe a set of techniques that enable
incremental compilation to exploit fine-grained concurrency in a shared-memory mul.ti-
processor and achieve asymptotic improvement over sequential algorithms. Because parallel
non-incremental compilation is a special case of parallel incremental compilation, the design of
a parallel compiler is a corollary of our result.

C Instead of running the individual phases concurrently, our design specifies compiler phases that

are mutually sequential. However, each phase is designed to exploit fine-grained parallelism.
By allowing each phase to present its output as a complete structure rather than as a stream of
data, we can apply techniques such as parallel prefix and parallel divide-and-conquer, and we
can construct applicative data structures to achieve sublinear execution time. Parallel
algorithms for each phase of a compiler are presented to demonstrate that a complete
incremental compiler car achieve execution time that is asymptotically less than sequential
algorithms. (P

Historically, the symbol table has been a bottleneck to parallel compilation; no previously
described algorithm executes in time less than linear in the number of declarations. We
describe new algorithms for parsing using a balanced list representation and type checking
based upon attribute grammars modified with a combination of aggregate values and upward
remote references. Under some mild assumptions about the language and target program, these

,phases run in polylogarithmic time using a sublinear number of processors.

The design of computer languages has been influenced by the compiler technology available; we
show how some language design decisions can simplify the design of a parallel incremental
compiler, allowing more efficient algorithms to be used.

Accession lor

DTIC TAB
(, ,) '-NTIS TGRA&I

Unannounced El
Justif-icaltion

is tribut ion/
Availability Codes _

Curriculum Vitae IAvail and/or
Dist Special

Neal M Gafter was born in Buffalo, New York on January 11, 1960. He took an

academic interest in software during his Junior and Senior years at Sweet Home Senior

High School, and began his professional career as a developer of scientific software for

Sierra Research Corporation (now LTV Aerospace and Defense) during summers and

academic breaks after High School, starting in 1977 and throughout his undergraduate

years. Neal studied Computer Engineering at Case-Western Reserve University, where

he was a recipient of various academic scholarships and appeared frequently on the

Dean's list. His first publication, submitted as a senior project, was a technical report for

Sierra entitled "Optimal Multitheodolite Position Estimate." His studies at CWRU led

him to take a strong interest in systems software, particularly compilers and operating

systems. He graduated from CWRU in May of 1981 with high honors.

In June of 1981 Neal took a job with a newly formed group at Xerox in Rochester,

New York, whose charter was to develop a language and software development envi-

ronment for distributed embedded real-time systems. At the same time, Neal began

half-time study at the University of Rochester, leading to a Master's degree in May of

1984. In January of 1985, he left Xerox and began full-time study at the University of

Rochester.

At the University of Rochester, under his advisor Tom LeBlanc, Neal studied lan-

guages and paradigms for distributed and parallel programming. One of his first projects

ii

/

t.
-

was the implementation of a Modula2 -opiler and runtime system for the BBN But-

"terfly parallel processor. He was a co-author and implementor for "SMP: A Structured

Message-Passing System for the BBN Butterfly." He also was a co-author and implemen-

'tor for the- DARPA benchmark project and paper "Parallel Computational Geometry."

In cooperation with an operating systems seminar, he was co-author of "The Elmwood

Multiprocessor Operating System," which appeared in Software - Practice and Expe-

rience, November 1989. At the 1987 International Conference on Parallel Processing,

he presented "Algorithms and Data Structures for Parallel Incremental Parsing," out

of which this dissertation grew. He has also taken part in the implementation of the

Psyche multiprocessor operating system.

ooIii

Acknowledgments

I would like to thank, first and foremost, my wife Ricki for her patience and support

during the years, and particularly the final months of my study.

Tom LeBlanc was my research advisor for this dissertation. Tom has a knack of

giving just the right amount and kind of direction, neither more nor less than necessary.

I would like to thank the Faculty and staff of the Department of Computer Science

at the University of Rochester for creating an ideal research environment, in which the

graduate students are able to pursue their own research interests.

I would especially like to thank the members of the Elmwood group for many en-

joyable discussions and debates.

This material is based upon work supported by the National Science Foundation

under Contract number CCR-8320136. The Government has certain rights in this ma-

terial. This work was also supported by ONR/DARPA Research Contract number

N00014-82-K-0193.

iv

Abstract

The time it takes to compile a large program has been a bottleneck in the software

development process. When an interactive programming environment with an incre-

mental compiler is used, compilation speed becomes even more important, but existing

incremental compilers are very slow for some types of program changes. We describe

a set of techniques that enable incremental compilation to exploit fine-grained concur-

rency in a shared-memory multiprocessor and achieve asymptotic improvement over

sequential algorithms. Because parallel non-incremental compilation is a special case of

parallel incremental compilation, the design of a parallel compiler is a corollary of our

result.

Instead of running the individual phases concurrently, our design specifies compiler

phases that are mutually sequential. However, each phase is designed to exploit fine-

grained parallelism. By allowing each phase to present its output as a complete structure

rather than' as a stream of data, we can apply techniques such as parallel prefix and

parallel divide-and-conquer, and we can construct applicative data structures to achieve

sublinear execution time. Parallel algorithms for each phase of a compiler are presented

to demonstrate that a complete incremental compiler can achieve execution time that

is asymptotically less than sequential algorithms.

Historically, the symbol table has been a bottleneck to parallel compilation; no previ-

ously described algorithm executes in time less than linear in the number of declarations.

v

We describe new algorithms for parsing using a balanced list representation and type

checking based upon attribute grammars modified with a combination of aggregate val-

ues and upward remote references. Under some mild assumptions about the language

and target program, these phases run in polylogarithmic time using a sublinear number

of processors.

The design of computer languages has been influenced by the compiler technology

available; we show how some language design decisions can simplify the design of a

parallel incremental compiler, allowing more efficient algorithms to be used.

vi

Table of Contents

Curriculum Vitae ii

Acknowledgments iv

Abstract v

List of Figures x

1 Introduction 1

1.1 The Incremental Programming Environment * 3

1.2 Thesis Statement 4

1.3 Dissertation Overview 5

1.4 Previous Work 7

1.5 Model and Assumptions 9

2 Lexical and Syntactic Analysis 10

2.1 Editing Model 11

2.2 Previous Work 12

2.3 Model and Assumptions 16

2.4 Lexical Analysis 17

vii

2.5 Syntactic Analysis. 20

2.6 Error Detection and Recovery 38

2.7 Complexity Analysis. 38

3 Parallel Separate Compilation 45

3.1 Introduction. 45

3.2 Related Work 47

3.3 The Makefile language 48

3.4 Parsing the Makefile language. 49

3.5 Parallel Makefile semantic analysis 50

3.6 Incremental update of Makefile symbol table. 52

3.7 List Comparison 55

.3.8 Representing the Makefile symbol table 60

3.9 Error R~covery. 62

3.10 Scheduling the dataflow graph. 62

3.11 Conclusions. 63

4 Semantics and Code Generation 64

4.1 Previous Work. 66

4.2 Attribute Grammars. 73

4.3 Implementing URAs. 86

4.4 Conclusions. 96

5 Conclusions 97

5.1 Parallel Algorithm Design 98

viii

5.2 Programmidng Languages 101

5.3 Practical Considerations 101

5.4 Impact on Programming Environment. 102

Bibliography 105

ix

List of Figures

2.1 Two-level Concurrent Hash Table 19

2.2 Overview of Parsing 20

3.1 Simplified Example of a Makefile 48

3.2 Grammar for the Makefile language 50

3.3 Data Structure for Tree Comparison 57"

3.4 Tree List Comparison Algorithm 57

3.5 Tree Comparison Algorithm: step 1 58

3.6 Tree Comparison Algorithm: step 2 59

3.7 Tree Comparison Algorithm: step 3 61

4.1 Simplified Grammar for Pascal Scopes 78

4.2 List Productions 79

4.3 Sample Grammar using Upward Remote Aggregates 86

4.4 Aggregate Data Structure 89

1 Introduction

The modern approach to software development environments has all of the tools working

together as one integrated package [Delisle et al., 1984]. The user, concerned only with

editing, running, and debugging the program, need not be aware of the existence of a

compiler. Interpreted systems are often closer to this ideal, are typically more integrated,

and require less support from the user than compiled systems. It is an accident of history

that users explicitly invoke compilers and linkers before running their programs.

Incremental compilers can present the same user model for program development

as interpreters while executing user programs significantly faster [Feiler, 1982; Fritzson,

1983; Schwartz et al., 1984; Fritzson, 1984]. An environment implemented with an

incremental compiler enables the user to change the program as it is being run and

debugged; ideally the program is ready to be run immediately after the changes are

complete. Unfortunately, few existing incremental compilers are fast enough to suit

these needs. It is the goal of this thesis to attack this problem by exploiting fine-grained

parallelism in incremental compiler design, with asymptotic complexity as a measure of

our success.

Complexity theory gives us important notions of algorithm efficiency that have been

fruitful in sequential program design; similarly, parallel complexity theory helps us to

understand parallel program efficiency. With the advent of larger and more powerful

multiprocessors, algorithms that have a time complexity that improves with increasing

1

numbers of processors are becoming more important for their effective use. Unfortu-

nately, most recent work on parallel tompilation has focused on the design, implementa-

tion, and performance evaluation of compilers for specific machines with a small number

of processors without an asymptotic analysis of the complexity of the underlying algo-

rithms.

For example, parallel compilers have been constructed using a pipeline strategy,

running the various phases of the compiler simultaneously. This technique yields only

a fixed speedup limited by the number of compiler phases. Although these studies help

us to evaluate the constant factors in an implementation, this should be secondary to

a design and analysis based on asymptotic complexity. Since sequential compilation

has linear time complexity, the goal of parallel compilation should be sublinear time

complexity: speedup that improves as the size of the program grows.

We describe a design that, by exploiting fine-grained, data-level parallelism within

each phase of the compiler, can achieve sublinear execution time with a sublinear number

of processors. For example, under some mild assumptions about the distribution of

target programs, our algorithm for parsing runs in time O(log3 n) using O(n/log3n)

processors, and our type checking algorithms run in O(log3 n) time using O(n/logn)

processors; fewer processors are needed when only small changes have been made to the

program.

Rather than present the design of a single compiler in detail, we present a set of

techniques that can be used to construct tools for building parallel incremental compilers

for different languages. Therefore, we rely on techniques that are suitable for describing

compilers in formal terms. The two main description languages are extended context

free grammars extended and extended attribute grammars. We also discuss how to use

these techniques in describing a parallel incremental compiler.

2

This thesis is also an extended example of parallel program design for a familiar but

realistically complex problem. We identify and discuss a number of parallel program

design techniques and principles tlat we have used throughout the compiler.

1.1 The Incremental Programming Environment

We believe the usual model of structured editing imposed by incremental compilers is

too restrictive [Waters, 1982]. Incremental compilers have used structured editors in

part because it is much easier to integrate an editor with an incremental compiler when

the editor is language-specific. We show how an incremental compiler can be integrated

with any text editor that has been modified to output a log of editing actions. Thus, the

user can apply a familiar editing paradigm while reaping the benefits of an integrated

environment.

The compiler described by our design reads this log as well as portions of the source

file to begin recompilation. Because the old version of the parse tree and symbol table

are maintained, the compiler need only examine the changes that appear in the source

file. Thus, the amount of work to recompile a program is related to the scale of the

changes made to it. By distributing the workload over a number of parallel processors,

we can reduce the elapsed time to complete compilation.

The structure of the compiler is based on a conventional syntax-directed translation

schema, with the individual phases of compilation storing their intermediate results in

a form that can be updated. In addition, the algorithms used in the design of each

phase exploit fine-grained parallelism. Because a compiler is limited in execution time

by its slowest phase, we describe parallel algorithms for each phase of compilation and

analyze the individual phases and aggregate complexity.

Our main contribution to the design of incremental compilers is an extension to

3

the attribute grammar formalism for symbol table maintenance called upward remote

aggregates. This technique is based on a separation of the problem of symbol table and

scope analysis (the question of where a definition is visible) from the independent prob-

lem of evaluating the identifier definitions and other semantic attributes (the question

of what is the definition of a symbol) in an order defined by the attribute and symbol

dependence graph.

1.2 Thesis Statement

It is the thesis of this dissertation that parallel algorithms can be used to achieve an

asymptotic improvement in running time over sequential algorithms for incremental

compilation.

We demonstrate the thesis by providing a set of techniques to implement an incre-

mental compiler that exploits fine-grain parallelism in the compilation process. For-

inal methods are used so that the techniques developed may be used for a variety of

languages. We present and analyze the complexity of our techniques relying, when

necessary, on assumptions about the characteristics of the programming language, the

program being compiled, and the set of program changes. The result is a design that

allows incremental compilation to be performed in parallel in sublinear time.

Parallel compilation is an important special case of parallel incremental compilation

that has seen some previous research. However, there has been no previous work that

describes and analyzes algorithms for parallel semantic analysis and its subproblem of

symbol table maintenance. We present new techniques that are amenable to analysis.

In time O(log2 n) using O(n) processors, we construct a graph of dependencies among

semantic attributes, identifier definitions and identifier references. After the graph is

constructed, the semantic attributes and definitions of the identifiers may be evaluated

4

in time dependent only on the depth of the semantic dependency graph.

The running time of the compiler as a whole is bounded by the running time of

its slowest phase, and so speedup in each and every phase is important; parallelism

between phases does not improve the asymptotic complexity beyond a constant factor.

In order to achieve our goal of asymptotic sublinear execution time, each phase of the

compiler must be highly parallel. If any part of the compiler has a linear factor in its

expected running time, then the execution time of the entire compiler will be linear. In

our design, each phase may complete before the next begins. Thus, the running time

of the compiler as a whole is the sum of the running times of the individual phases.

Because there are a constant number of phases, this is proportional to the running time

of the slowest phase.

We do not hesitate to split an algorithm into a constant number of mutually se-

quential but highly parallel phases. By consistently applying this design approach to

problems throughout the compiler we derive a compiler design in which each phase is

simple enough to be amenable to analysis, enabling us to relate the complexity of the

compiler directly to features of the language and target program.

1.3 Dissertation Overview

The organization of this thesis is based on the phase structure of the compiler. Our

compiler design begins with a text editor that the user applies to the source text of the

target program. We assume a conventional editor has been modified to output a log of

editing actions, expressed as insertions and deletions (since all actions can be expressed

in terms of these). When the user has completed a set of changes, the compiler is

invoked, either automatically, by user request, or at periodic intervals.

Chapter 2, Lexical and Syntactic Analysis, presents algorithms that process the

I I I , :5

editor log to determine what parts of the program contain new text. The parser then

constructs a new parse tree by assembling pieces of the old parse tree and creating new

parse tree nodes where the program has changed, invoking lexical analysis on any new

text. The syntax of the language is described by the compiler writer using context free

grammars extended with a new notation for lists that is used to improve the efficiency of

parallel parsing by creating balanced parse trees. Our analysis shows that parsing takes

O(log3 m) time ih m, the number of editing opertions or O(log3 n) time in n, the size

of the program, using O(n/ log3 n) processors. If the program is syntactically correct,

the compiler continues with semantic analysis.

Chapter 3, Parallel Separate Compilation, is a slight departure from our exposition

of the compiler design. In it we discuss the use of parallelism to process a makefile, and

in the separate compilation units of a single program. This is one way of exploiting

parallelism at a large grain for the incremental compilation of multi-unit programs,

but the chapter's main purpose is as an example of the application of techniques from

Chapter 2, as well as an introduction to the techniques described in semantic analysis for

the processing of the Makefile language. This chapter develops algorithms for comparing

lists of items represented as balanced binary trees, to discover differences between the

set of items at their leaves.

Chapter 4, Code Generation and Semantic Analysis, describes a new extension to the

attribute grammar formalism, upward remote aggregates, that is used by the compiler

writer to describe the scoping structure of programming languages. The formalism

improves the clarity of the language description over conventional attribute grammars

and provides a natural way to express scoping constructs. We describe and analyze an

implementation strategy that exploits fine-grained parallelism in the evaluation of these

grammars.

Semantic analysis begins by comparing the old and new parse trees using algo-

6

rithms developed in Chapter 3, and updates the aggregate attributes (symbol tables)

to reflect any changes in scope structure of the target program. Then, the parse trees

are compared once more to detect changes in the set of identifier references. After these

two phases, all dependency links involving attributes in the aggregates have been con-

structed. A transitive closure from the set of changed attributes is used to mark all

attributes affected by the changes, after which the attribute dependency graph is sched-

uled for evaluation using a scheduling algorithm based on a variant of the topological

sort algorithm.

We discuss a number of techniques that can be used by the compiler writer to

describe the semantics and code generation for typical programming languages using

the extended attribute grammar formalism. The list productions used in parsing create

balanced parse trees of bounded depth, for which techniques such as parallel divide-

and-conquer may be used to solve many of the problems arising in semantics and code

generation.

Finally, Chapter 5 summarizes our results, considers them in a practical context,

and describes the major remaining open problems and directions for future work.

1.4 Previous Work

This section is a brief survey of previous work on the topic of parallel compilation

that does not fit well into our subdivision of the compiler phases. Each later chapter

discusses previous work related to its task, but some parallel compilation researchers

take different approaches. One unifying feature of all of this work is that it is limited

to a constant speedup, or put another way, s linear time in the length of the program

to compile. From this point of view, they all fail to meet our criteria of success.

Pipelining has been used to exploit parallelism in compilation [Baer and Ellis, 1977;

7

Huen et al., 1977; Miller and LeBlanc, 1982; Allen, 1987] by breaking the compiler

into a number of separate phases. .These phases are run simultaneously on separate

processors. Unfortunately, the number of phases is built into the design of the compiler,

and a typical phase must examine all of the input, so a compiler with n phases cannot

achieve a speedup of more than n. When implemented, these designs report at best a

speedup of about 2.7.

Vandevoorde's work [1988] was an ambitious parallelization of an existing sequential

C compiler. His results show satisfactory speedup, using five processors, for all but

symbol table analysis. One of the important contributions of that work is a parallel

programming library that automatically clusters concurrent tasks for parallel divide-

and-conquer algorithms to effectively use practical multiprocessors. This points out

the practicality of very-fine-grained parallel algorithms based upon the technique of

divide-and-conquer.

A recent paper [Khanna et al., 1990] proposes a method for parallel compilation

based upon partitioning the grammar of the language into functional subgrammars.

A processor is devoted to each functional subgrammar, and the processors operate

in parallel. This approach, unfortunately, is limited in parallelism by the number of

subgrammars the compiler writer can identify (at most the number of nonterminals

in the grammar) which is a constant independent both of the number of processors

available and the size of the program.

There has been little work to date on the use of parallelism in incremental compila-

tion. Kaplan and Kaiser (1986] consider the problem of multiple programmers working

on different parts of a common program, using workstations sharing a common high-

speed network. Individual source files are compiled sequentially.

8

1.5 Model and Assumptions.

Our compiler design assumes a collection of identical shared-memory processors with

uniform memory access time. Where we explicitly share data, we assume that reads

are concurrent and writes are exclusive. In addition, we utilize semaphores without

considering their implementation, and we use concurrent search structures, for which

we describe one possible implementation.

The grain size appropriate to the target multiprocessor is of little importance to our

design. Our algorithms are designed to exploit parallelism at a very fine grain, but a

number of techniques are known to efficiently bundle grains in a way suitable for specific

host architectures.

Finally, garbage collection would be very helpful in an actual implementation based

upon the ideas described here, because of our use of applicative data structures.

9

2 Lexical and Syntactic Analysis

One of the most significant stumbling blocks to efficient parallel compilation is the depth

of the parse tree. Algorithms that can parse programs with arbitrarily deep trees in

logarithmic time are known, based both on LL [Skillicorn and Barnard, 1988] and LR

[Klein and Reif, 1988] techniques. These algorithms do not directly construct a parse

tree, which is useful in a complete compiler. Even if the compiler does not explicitly

construct the parse tree, but only implicitly follows it while performing its analysis,

the depth of the derivation followed is a constraint on the available parallelism in the

compiler that is difficult to overcome.

Deep parse trees are an impediment to efficient concurrent semantic analysis and

code generation because each requires, in general, a traversal of the entire parse tree.

There are only two possible causes of deep parse trees: deeply nested programs and

programs with long lists.

Deeply nested programs will unavoidably create deeply nested parse trees, so it is

unlikely we will find algorithms for parallel compilation whose execution time will be

sublinear for such programs. We believe that deeply nested programs do not appear in

practice1 . We concentrate our attention, therefore, on programs with bounded nesting

depth.

'We would like to say that real programs are bounded in nesting depth by O(logn) or, better yet,
0(1) but we have no hard evidence. However, we have never seen a program nested so deeply that the
indentation was wider than a display screen. This would imply a constant bound on nesting depth.

10

The most common cause of linear depth parse trees is lists. Lists of items (such as

statements or declarations) are represented in a grammar as a left- or right-recursive

nonterminal. This type of grammar generates a parse tree whose depth is proportional

to the length of the list in the target program. It would be difficult to traverse such a

deep tree in parallel and compute semantics of any complexity in less than linear time.

In order to make it easier to compute the semantics in .sublinear time, parsing

syntactic lists should be done differently. We introduce special list productions into the

grammar describing the language. These fist productions may be used by the compiler

writer in place of right- or left-recursive productions to describe lists of syntactic entities.

<List> <List> <List>

<List> <Item>

This grammar describes all binary parse trees for a list of items. Lists described this

way can be parsed into a balanced binary tree representation of the list, instead of the

right-linear or left-linear binary parse trees that would be generated by the conventional

recursive techniques. A list of length n may be represented by a balanced parse tree of

depth O(logn). Such balanced structures can be parsed and traversed in parallel more

efficiently than the linear structures.

By using an ambiguous grammar and reducing the parse tree depth, we have the

potential to improve the available parallelism in parsing, semantic analysis, and code

generation.

2.1 Editing Model

Most work on incremental compilers takes the point of view that the parser should be

integrated into the editor, and that the user should not be allowed to enter a syntactically

11

incorrect program. The language-oriented editor approach has both advantages and

disadvantages compared to the text editing model. Unfortunately there has been little

systematic study of the impact of this paradigm on programmer productivity. Waters

[1982] gives an argument in favor of the retention of text oriented commands in a

program editor.

When a language-oriented editor is used, the parse tree is maintained as the program

is modified, obviating the need for parallel or incremental parsing algorithms. We

describe algorithms that may be used with a conventional text editor, making both

parsing techniques applicable, to compiler developers. Whichever form of editing is

supported, the compiler can be run as a background process during editing to give the

user periodic feedback.

2.2 Previous Work

A number of reserchers have looked at the'problems of parallel parsing and scanning and

incremental parsing and scanning, but we are the first to consider parallel algorithms

for incremental parsing and scanning.

2.2.1 Lexical Analysis

Lexical analysis translates portions of the input program, which is a stream of characters,

into a stream of syntactically meaningful entities, or tokens.

Lexical analysis can be bxoken down into two distinct tasks: scanning and screening.

Scanning breaks up the input stream into substrings, based on a grammar describing

the language's lexical structure. Scanning also produces a crude classification of the

substrings based upon their structure. When implemented as a finite-state machine

(FSM), this crude classification results from the identity of the final accepting state for

each token.

12

Screening refines the classification produced by the scanner, discards blanks and

comments, and distinguishes keywords from identifiers. Screening also produces a name

table that contains the name of each identifi,r appearing in the input, and replaces the

identifier with its index into the name table, thus producing a unique value for each

distinct identifier name encountered.

The screener produces a sequence of tokens, each represented by its token type and

an internal representation. For identifiers, the internal representation is an index into

the name table; for constants, it is the value.

Parallelism in scanning may be obtained by dividing the source program into a num-

ber of segments of approximately equal size (or difficulty) and performing lexical analysis

on each segment simultaneously using a single processor for each. The scanning process

simulates a sequential scan by having the local processors simulate the state transitions

of a sequential scanner. The difficulty of the scanning process is in determining what

state of the FSM the local, scanner should use at the beginning of its text segment.

This is a special case of the Parallel Prefix problem [Ladner and Fischer, 1980] that

Schell [1979] has solved in O(logn) time (using O(n) processors. His processor bound

may be easily reduced to 0(n/ log n) without affecting the asymptotic running time.

Another technique is to perform a minimal amount of parsing during scanning,

possibly using source-language specific techniques [Low, 1988; Seshadri et al., 19871.

This parsing matches multi-line tokens across processors, handles nested comments,

and determines regions of the program that might be processed independently by later

phases of the compiler.

Screening is a subtask of lexical analysis that creates a single name table for the

identifiers appearing in the program. A centralized name table introduces a bottleneck

for screening, so it must be distributed. Schell [1979] recommends a hierarchical table

13

in which each processor maintains a cache of the global name table. Only when the

local cache fails does the processor consult the global table. Unfortunately, the global

table remains a centralized bottleneck to screening.

Jim Low [1988] solved this problem by putting one or more buckets of the centralized

hash table on each processor. In this way, the memory accesses are distributed. Soine-

what surprisingly, with this improvement caches of remote name table information did

not improve the performance for the BBN Butterfly implementation (a shared-memory

machine), because the overhead of a software-implemented cache was more than the

sum of the remote memory referencing overhead plus the relatively small contention

on the infrequent hash-table collisions. Low's results provide evidence that, given a

sufficient hash table size, scanning can be performed in nearly constant time for a wide

range of source file lengths.

Yu [Yu, 1989] has recently published a survey of parallel algorithms for lexical analy-

sis. The completeness of that work allows us to treat parallel lexical analysis as a solved

problem, so we consider it only briefly.

A number of researchers have considered the problem of concurrent search structures,

for which the screener's identifier table is a single application [Ellis, 1985; Shasha and

Goodman, 1988]. We describe in Section 2.4.3 a concurrent extensible has table suitable

for the screener.

2.2.2 Incremental Parsing

Morris and Schwartz [1981] describe a structured editor based on incremental parsing.

A "split" of the parse tree is maintained at the current position of the cursor. Although

the algorithm supports editing using the textual viewpoint, it requires the use of a

special editor, and it must consider the user's changes sequentially as they are entered.

Ghezzi and Mandriolli [1979] describe a sequential incremental parsing algorithm for

14

a single change to the text file. Parsing begins just to the left of a single change, and

to avoid parsing the rest of the program, a similar reparse from right to left begins just

to the right of the change.

Jalili and Gallier [1982] describe a general algorithm for sequential incremental pars-

ing based on a number of changes to the text file. The algorithm assumes the existence

of an easily computable function from parse nodes to source positions and the reverse;

their implementation provides this by integrating the parser (and the parse tree data

structure) into the editor. Stromberg [1982] separates the implementations of text edi-

tor and parser by having the editor output a log of the users editing a~tions. Attributes

in the parse tree record the length of the text derived from each nonterminal, allowing

easy location of affected nodes. These attributes are unaffected by nonlocal changes.

Poe [Fischer et al., 1984] uses an ambiguous grammar for list productions to make

it easy for the user to enter items at any position in a list. Since Poe is based on a

structured editor, this ambiguous grammar is not used in a parser. Syned [Horgan and

Moore, 1984] uses the text editing model for program parts, and completely reparses

the syntactic construct that is being edited. Sy'ned includes special processing for list

productions to flatten the abstract tree representing recursively parsed lists, but this

processing does not improve parse time.

2.2.3 Parallel Parsing

Early papers on parsing considered narrow classes of languages and developed mostly

ad hoc techniques [Zosel, 1973; Huen et al., 1977; Park and Burnett, 1979; Christopher

et al., 1981].

Of parallel parsing algorithms, those based on non-canonical generalizations of bottom-

up strategies have been the most widely studied [Fischer, 1975; Mickunas and Schell,

1978; Cohen et al., 1982; Ligett et al., 1982; Cohen and Kolonder, 1985; Sarkar and Deo,

15

1986]. These algorithms construct their derivations starting at the leaves of the parse

tree, building upwards. Because each level of the parse tree is constructed only after

the deeper levels are completed, the depth of the derivation is the limiting factor in the

execution time of these parsers. If deep parse trees can be avoided, these algorithms

can make effective use of more processors.

Fischer's dissertation [19751 is a seminal work in parallel parsing that describes a

synchronous parallel parsing algorithm for a vector machine. Cohen and Kolonder [1982]

provide upper bounds for its speedup.

Schell [1979] considers the problem of scanning and parsing on an asynchronous

multiprocessor, and develops a parallel generalization of standard bottom-up techniques.

Ligett, McCluskey, and McKeeman [1982] describe a similar parallel parser based on

a non-canonical parsing algorithm developed by Penello and DeRemer [1978] for error

recovery. The performance of these and related algorithms have been analyzed using

modeling [Cohen and Kolonder, 1985] and simulation [Schell, 1979; Ligett et al., 1982;

Sarkar and Deo, '1986].

2.3 Model and Assumptions

The inputs for syntactic analysis are the text file for a single compilation unit, a log

of editing actions recorded by the editor, and the parse tree for the program prior to

the editing changes. The inputs are assumed to be in memory when processing begins.

Similarly, the parser output, a parse tree, is left in memory when processing completes.

It is assumed that a standard text editor has been modified to produce a log of user

editing actions. The actions recorded in the log are simple insertions and deletions;

other actions are translated into a sequence of insertions and deletions before inclusion

in the action log.

16

Some simplifying assumptions are made about the scanner to clarify the exposition

of the parsing algorithm. Specifically, we assume that editing actions do not affect

token boundaries. This assumption excludes an editing action that deletes a separator

between tokens, or inserts a separator within a token. A simple way of enforcing this

restriction is to log editing actions on the basis of line numbers, and to disallow tokens

that cross line boundaries (a simplification that has already been discussed as useful for

lexical analysis). The textual positions of the beginning of all lines can be found in a

prepass in O(log n) time using O(n/ log n) processors for a file of length n using parallel

prefix techniques [Ladner and Fischer, 1980], so it is easy to locate text in the source

file given its line position.

2.4 Lexical Analysis

Lexical analysis is treated as a subroutine to syntactic analysis. This section considers

the problem of implementing incremental lexical analysis on a shared-memory multi-

processor.

2.4.1 Scanning

A number of programming languages have a lexical structure that can be scanned much

more efficiently than the general case. These are languages in which, by examining

a constant number of non-initial contiguous characters of the input, it is possible to

compute the state that a sequential FSM would end up in at the end of the substring.

For example, if the language does not allow tokens to cross line boundaries (comments

being terminated at the end of a line, as in Ada) and lines are bounded in length, then

one may infer that the state of the FSM after the end of every line is the FSM's start

state. In this way, each processor only need examine a constant number of characters

of left context to be able to correctly scan its substring. This technique for inferring

17

FSM states is much simpler than implementing the full parallel prefix computation.

Instead of solving the general parallel-prefix problem in O(logn) time, this simpli-

fication makes it possible to solve the problem in 0(1) time using .0(n) processors, or

with the same time and processor bounds as before but with an improved constant

factor.

In the incremental case, substrings of new text can be scanned independently after

determining the substring's initial state using the bounded left context, as above. In

the case of more general regular languages, local changes can have far reaching effects,

so incremental scanning can be as difficult as the non-incremental case.

On the basis of the simpler and more efficient implementation possible, we strongly

recommend the use of languages whose lexical structure admit bounded regular left-

context. This is one example of how compiler design techniques for parallel and incre-

mental compilation impact language design.

2.4.2 Screening

In the overall compiler design, scanning is treated as a subroutine to parsing. When

the tokens for new text are needed by a processor in the parsing phase, lexical analysis

is performed on the new text at that time. This is inherently incremental because it

only performs lexical analysis on new text. If we assume the languages lexical structure

admits bounded left context, then lexical analysis for n characters using p processors

can be performed optimally in time O(n/p).

2.4.3 A Concurrent Extensible Hash Table

In a sequential compiler, the screener stores each identifier it finds in a search structure,

so that all instances of the same identifier may be associated. In a parallel compiler, this

18

0 subtgble bucket chains

1 size

2 lock

3 subtable descriptor

7/

expansion

area

root table (cached) subtable

Figure 2.1: Two-level Concurrent Hash Table

search structure must allow a high degree of concurrency so that it does not constitute

a sequential bottleneck.

Concurrent linear or extensible hashing schemes [Ellis, 1985] have been proposed as a

suitable basis for a concurrent search structure, but they suffer from the disadvantage of

having a single top-level lock to control expansion and contraction of the hash directory.

This central could become a bottleneck or a point of memory contention. We describe an

extension to these techniques that effectively distributes the centralized lock to reduce

the source of contention while still performing in expected 0(1) time per operation.

Figure 2.1 presents a structure that can be used for just this purpose. A single

global hash table of fixed size is used to index one of a number of subtables distributed

among the processors. The number of buckets in the global table is proportional to the

number of processors, so the probability of a conflict on the subtable lock will be some

small constant. Each subtable contains an extensible hash table to contain keys that

19

old source file

edito edior l fragment list construction

new source file fragment list

symbol lst update

symbol list revious parse tree

G Ersng parse tree

Figure 2.2: Overview of Parsing.

hash into its global bucket, so the subtable can be accessed in expected constant time

independent of the size of the subtable.

Because the probability of a collision on the subtable descriptor is a small constant,

operations on this hash table require expected 0(1) time. The space requirements for

p processors and n operation is O(p + n).

2.5 Syntactic Analysis

The task of the syntactic analysis phase is to translate a textual representation of the

program into a parse tree. Because the compiler is incremental, it constructs the parse

tree by modifying the parse tree for the previous version of the program. The log of

editing actions produced by the editor is translated by the fragment list construction

into a concise description of the difference between the old and new source files. The

fragment list and the old parse tree are used during symbol list update to construct an

updated symbol list for the program. The symbol list describes the source file as a

20

sequence of tokens from the source file and special nonterminal symbols that represent

unchanged syntactic constructs; each contains the root of the old parse subtree for

the construct. Finally, the new parse tree is constructed using a parallelization of

conventional LR techniques. Figure 2.2 gives an overview of the syntactic analysis.

The strategy for symbol list updating will be to disassemble nodes of the old parse

tree where the user has changed the text. A nonterminal symbol can be disassembled

by replacing it with the nodes directly below it in its parse tree. Breaking up the parse

tree in this way yields a list of symbols. From the list, symbols are deleted where the

user deleted text, and symbols are inserted where the user inserted text, using lexical

analysis as a subroutine. Finally, the symbol list is parsed to reduce sets of symbols

into a nonterminal symbol, until only the start symbol of the grammar remains.

2.5.1 The Edit Log Data Structure

The edit log is an array of descriptions of editing actions in the order in which the user

performed the operations. The log is output by the editor at the end of the editing

session. Each action is an insertion or deletion, and for each change, the position and

the size of the change is recorded. The positions are locations in the file in its transient

state during editing, since this is the form in which the editor sees the file. The actual

text manipulated by the editing actions does not appear in the edit log because the text

file output by the editor contains the necessary information.

The edit log is a convenient data structure for the editor to output, because it is not

much different from what the user types to the editor.

2.5.2 The Fragment List Data Structure

The text changes made during editing must be applied to the parse tree representation

of the program to produce a symbol list that reflects the modified program. However,

21

each editing action refers not to positions in the original file, but to positions in the file

in its transient state. To apply the changes to the tree in a highly parallel mainer, the

edit log must be translated into a fragment list, which is a concise description of the

difference between the old and new source files only in terms of positions in the old and

new source files.

The fragment list consists of descriptions of fragments of the source file in increasing

order of (new source file) position. There are two types of fragments. An insertion

fragment describes a contiguous segment of the source file that was inserted by the

user, and records its length in the new text file. The position of the text in the new

text file is implied by the position of the fragment in the fragment list. A "carry-over"

fragment is a fragment of text that remains from the old source file, and is described by

the position and length in the old text file. Deleted text is not described in the fragment

list.

The concatenation of the fragments described in the fragment list is the entire file.

The fragment list is thus a concise description of the new source file relative to the old

source file.

There are two important invariants of the fragment list data structure: (1) there

are never two adjacent insertion fragments in the fragment list, because such fragments

are merged, and (2) the carry-over fragments appearing in the fragment list appear (to

an in-order traversal) in increasing order of source position in the old source file. This

latter condition results from the restricted form of editing actions that can be recorded,

i.e. insert some lines and delete some lines.

Two of the data structures described here, the fragment list and the symbol list,

are maintained using an applicative variant [Reps, 1982] of the concatenable queue data

structure [Aho et at., 1974]. Because the list is represented using a balanced tree, it can

22

be divided approximately in half in constant time. The concatenable queue supports

the division of a list at a given position in O(logn) time, and allows two lists to be

concatenated in O(logn) time where n is the number of queue entries.

The fragment list maintains summary information in the tree nodes of the concaten-

able queue. In particular, it must store the size of.the text represented by the sublist,

making it easy to locate fragments on the basis of source file information. The summary

information can be maintained with only a constant factor overhead in parsing time.

2.5.3 Fragment List Construction Algorithm

The fragment list provides a differential description of the source file, much like the

unix diff command output. The fragment list is computed from the edit log to avoid

processing the entire source file.

The purpose of the fragment list is to concisely describe the source file, by indicating

which parts are new and which parts are old. It is a list of descriptions of pieces or

fragments of the file. Some translation is required to construct this list because each of

the editing actions in the edit log refers only to transient positions in the source file.

The approach taken is parallel divide-and-conquer. The procedure translate trans-

lates an edit log into a fragment list by first translating two halves independently and

then composing the results. As a practical matter, a more efficient sequential algorithm

could be used once deep enough in the recursion to guarantee that all processors are

kept busy.

Both the edit log and the fragment list represent a set of changes from a hypothetical

beginning state. Thus, it makes sense to consider independently some portion of the

edit log. The edit log is divided approximately in half to simulate the processing of two,

shorter editing sessions. The second half of the edit log represents the set of changes

relative to the state of the source file halfway through the editing session. The two

23

logs are then simultaneously translated into fragment lists. The first of these resulting

fragment lists represents the hypothetical intermediate file relative to the original; the

second fragment list describes the final file relative to the hypothetical intermediate file.

Finally, these two file-to-file mappings are composed to produce the description of the

final file relative to the original.

The procedure translate, below, translates the edit log into a fragment list using this

divide-and-conquer technique.

procedure translate(edit-log el)
returns fragment-list

(1) if el is only a single change, then
(a) for a deletion at line k of m lines:

,return a fragment list vith two fragments:
(i) carry-over: position 1 and length k-i

(if k=l then discard this fragment)
(2) carry-over: position k~m and

length infinity (rest of file)
(b) for an insertion at line k of m lines:

return a list with three fragments:
(1) carry-over: position I and length k-i
(2) insertion with length m
(3) carry-over at. position k

with length infinity.

When the input is sufficiently small, brute force is appropriate. Infinity

is used to refer to the end of the file. Otherwise:

(2) divide the input edit log el into two lists
ell and e12 of approximately equal size.

Because the input is represented with an array an approximate split

requires constant time. We translate the two resulting half-problems into

fragment lists independently, and then compose the results.

(3) In parallel,
(a) fli = translate(ell)
(b) f12 - translate(el2)

24

After this step, the fragment list fll represents the state of the file halfway

through the editing session. f12 represents the state of the output file relative

to the state halfway through the session.

(4) fl = compose-fragments(fll, f12)
(5) return fl

The two fragment lists are composed by applying the set of changes described by one

to. the other. It is a simple matter to sequentially combine these fragment lists, splitting

fragments in fl at the borders of fragments in fl2. However, a sequential algorithm for

n fragments would cause the running time of the translation to be O(n), dominated by

this merge step. It is therefore important to use a parallel composition algorithm.

The fragment list is independent of the order of the changes in its description of the

file. As a result, the merge of fll and fl2 may be done in a highly parallel manner by

dividing the problem at a source position boundary.

/* compose the text translation functions fll */
/* and f12 by applying the changes described */
/* in f12 to the file described by fli */
procedure compose-fragments (

fragment-list fl, f12)
returns fragment-list;

(1) if f12 is a single fragment f
then apply it directly:
(a) if f is an insertion fragment, then

-b := f12 /* to be returned */

When fl2 is a simple insertion fragment as, it indicates that any text

described by fll has been deleted, since none has been carried over.

(b) if f is a carry-over fragment, then
(1) (b,a) -

split-fragment-list (fl i, f.position)
(2) (b,a) =

split-fragment-list (a, f.length)
(c) return b

25

A list containing only a carry-over fragment indicates that whatever was

not carried over has been deleted. The appropriate segment of fll is ex-

tracted by splitting it twice. The split-fragment-list function divides a frag-

ment list into two fragment lists according to a source position, in which case

only one part of the split is used. The summary information maintained at

the nodes of the balanced representation of the fragment list record the

length of the yield of each sublist, so split-fragment-list can be performed in

O(log n) time where n is the number of fragments in the list to be split. If

the split position resides inside a fragment, the fragment is divided into two

fragments describing its halves.

When fl2 is a single fragment brute force is used to compose fll and f12.

Otherwise, fl2 is divided intci two lists.

/* otherwise, f12 is not a single fragment */
(2) Divide the fragment list f12 into two

fragment lists a and b of approximately
equal number of fragments.

The fragment lists are represented using a balanced tree scheme, so a

balanced division will cost only constant time.

(3) In parallel,
(a) cl = compose-fragments(fll, a);
(b) c2 = compose-fragments(fll, b);

These fragment list compositions can be executed in parallel because they

occur in non-overlapping regions of the source file. For practical purposes,

the fragment list flu could be split to reduce the running time, but this would

have no effect on the asymptotic performance.

(4) return concatenate(ci, c2)

26

A description of the entire source file is constructed from the description of its two

halves. If the last node of cl and the first node of c2 are insertion fragments, they will

need to be combined. Concatenation is one of the operations that the balanced data

structure supports in O(log(n + m)) time for lists of length n and m.

2.5.4 The Symbol List Data Structure

The symbol list data structure represents a list of tokens. There are two types of sym-

bols: a terminal symbol represents a token appearing directly in the source program,

and a nonterminal symbol represents a syntactic construct that has already been rec-

ognized. Each nonterminal stores the root of a parse tree for its syntactic construct,

and replaces its yield in the symbol list. An invariant of the symbol list data structure

is that the concatenation of the yields of the symbols in the list is exactly the source

program. In this sense, the symbol list is similar to a sentential form.

The symbol list is maintained using an applicative variant of the concatenable queue

data structure, similar to that used for the fragment list. The concatenable queue

supports the division of a list of n elements at a given position in O(logn) time, and

allows two lists of length n and m to be concatenated in O(log(n + m)) time. The

elements of such a list can be enumerated in linear time.

2.5.5 Symbol List Updating Algorithm

The next task of the parser is to produce a symbol list for the program. Since the

compiler is incremental, the previous symbol list is updated using the fragment list.

The old symbol list contains only the start symbol of the grammar if the previous parse

was successful; in this case it is called a complete parse tree. There will be more than

one symbol in the old symbol list if there was a syntax error in the previous version of

the source file.

27

Each nonterminal in the symbol list contains the parse tree for the construct, so the

list may be expanded by replacing any nonterminal in the list by the list of symbols

directly below it in the parse tree. The yield of a symbol list is not changed by such

expansion.

To update the symbol list to represent the new program, any nonterminals that span

source positions where changes have been made by the user are repeatedly disassembled.

A nonterminal symbol is disassembled by replacing it in the fragment list with the

symbols below it in its parse tree. Next, some symbols are removed from the list and

some are inserted to update it to represent the new version of the source file. The hope

is that the unchanged text will have the same syntactic derivation as before; in this case

the parser can avoid repeating previous parsing work if the previous work is valid in the

new parse tree. When the derivation is different, the nonterminal must be disassembled.

A parallel algorithm to update the symbol list is also based on divide-and-conquer.

We split both the fragment list and old symbol list, and recursively update the two

halves. The two updated halves are then concatenated to produce the symbol list for

the new text file.

procedure update-symbol-list (
symbol-list t;
fragment-list fl;
/* position of result in new file */
integer position;
/* position of symbol list in old file */
integer offset)
return symbol-list;

(1) if the fragment list contains only the
single fragment f
(a) if the fragment is an insertion fragment,

then run a scanner on a portion of the
program file at "position" for length
f.length+offset. return the resulting
list of token symbols.

28

If the fragment list contains only a single insertion fragment, then all of

the text is new. The source file is scanned at the appropriate position. We

assume a parallel scanning algorithm that runs in O(log n) time for text of

length n.

(b) if the fragment is carry-over, then
(1) (a,b) :=

split-symbols(t, f .position-offset)
(2) (b,c) := split-symbols(b, f.length)
(3) return b;

If the fragment list contains only a single carry-over fragment, then the

symbol list can be extracted from the old symbol list. The old symbol list

is split twice to extract the appropriate section.

The split-symbols procedure is a hybrid of the split operation on the

symbol list and the disassembly of the nonterminal nodes discussed above.

It splits a given list at a given source position relative to the beginning of that

list. If the source position lies within a nonterminal, the symbol is repeatedly

disassembled until the position is between symbols in the list. The list is

then split between these symbols. Note that source length information is

maintained in each symbol and summarized in the nodes of the balanced

tree representation of the list, allowing location of the position where the

list is being split in O(logn) time where n is the size of the token list. Time

proportional to the depth of the parse tree is also required to disassemble

the nonterminals. The result of split-symbols is two symbol lists.

(2) Split the fragment list fl into two halves
fll and f12 of approximately the same size.

The problem is divided into two smaller subproblems by dividing the

fragment list which describes the source file. Since the fragment lists are

represented using a balanced tree scheme, only constant time is required.

29

(3) Find the first carry-over fragment f in f12
Let p = f.position

This step finds the position in the source file where the old symbol list

may be split. Each half of the recursion will be used for one of the subprob-

lems.

Because two insertion fragments are never adjacent, p will be the first or

second fragment. If fl2 is only a single insertion fragment, use the position

t.length as p.

(4) (t1, t2) := split-symbols(t, p)

The old symbol list is split at. the position boundary found in (3). Because

carry-over fragments appear in increasing order of position in the original

source file, pieces of the source file that the previous and current versions

have in common appear in the same order. This fact allows the symbol list

to be split along with the fragment list, so the recursive calls can use smaller

symbol lists as input.

(5) In parallel,
(a) ti. := update-symbol-list(

t1, fll, position, offset)
(b) t2 := update-symbol-list(

t2, f12, position+fll.length,

offset+t2.length)

The two parts of the resulting symbol list are constructed independently

from the fragment lists describing them. Changes are recursively applied to

right and left halves of the old symbol list.

(6) return concatenate-symbols(ti, t2)

The two parts of the updated symbol lists are concatenated to produce the symbol

list for the entire new file.

30

2.5.6 Parsing Algorithm

Having constructed the symbol list for the new program, the final problem is to turn

it into a parse tree for the entire program. As with all bottom-up parsing, a list of

symbols representing a single syntactic construct is replaced by a single nonterminal.

This reduction replaces the group of symbols with the corresponding enclosing syntactic

construct, constructs a tree node for it, and inserts the representative nonterminal into

the symbol list. Reductions must be applied repeatedly until only the symbol for the

start symbol remains.

Conventional LR techniques perform only the leftmost reduction at every step, re-

ducing only constructs that appear on the top of the parsing stack. These techniques are

inherently sequential. Schell [1979] describes a non-canonical generalization of LR pars-

ing in which a number of processors simultaneously work on different parts of the input.

In Schell's algorithm, the input string is divided into a number of sections, and each

section is parsed by a separate processor. Each processor independently finds locally

leftmost phrases to reduce as in conventional LR parsers. When it is unable to con-

tinue because of an error, inadequate state, or insufficient stack depth for a reduction,

a processor passes the terminal and nonterminal symbols in its stack to the processor

working on the segment to its left to be treated as a continuation of its input. Thus,

the parser is a pipeline of processors. The LR parsing techniques are easily generalized

to allow the resulting nonterminal symbols.

The parser completes when the leftmost processor completes parsing the entire pro-

gram. Because much of the program is "pre-reduced" by other processors, the leftmost

processor potentially sees many fewer symbols than a sequential parser would.

In the parallel parser, finding a phrase is difficult because the non-leftmost processor

may not have sufficient context to determine the leftmost phrase. A further complication

31

arises when a processor does not have the prefix of a phrase on the parse stack when a

reduction is attempted. These are the two fundamental problems solved by Schell by

modifying the state construction process and the parsing actions.

Since only the leftmost processor knows its context in the parse of the entire string,

the non-leftmost processors start in a super-initial state, which is constructed by includ-

ing all non-initial items. This state reflects the fact that these processors start without

the benefit of left context normally provided by the contents of the parse stack-it may

be starting out at an arbitrary position in any syntactic construct. The closure and

parser actions are constructed as usual.

During the construction of the states, some of these additional states may display

shift-reduce or reduce-reduce conflicts on certain inputs. A processor cannot distinguish

the phrase to be reduced, and will pass the nonterminals on the parse stack to its

neighbor to the left, which presumably has more context. In this case, Ligett et. al.

[1982] restart the parser in the super-initial state on its remaining input. The more

refined continuation states constructed by Schell [1979] reflect knowledge gathered on

the stack prior to the conflict, and is therefore used for the construction of our parse

tables.

The problem of insufficient stack depth to perform a reduction is handled by ap-

pending the symbols on the parse stack of the current processor to. the input for the

processor on the left, and restarting the current processor in the state accessed from the

super-initial state by shifting the left hand side of the production. This simplification

of the algorithm described by Schell has little effect on the running time.

The parsing algorithm of Schell will not make a reduction that is an incorrect deriva-

tion for the input string, so each nonterminal seen is part of the correct derivation.

However, our incremental parser may start with nonterminals from the old parse tree

32

in its input. These nonterminals do not necessarily appear in the correct derivation of

the new program, and might therefore have tQ be disassembled during .the parse. Even

worse, these incorrect nonterminals may be shifted by a processor, allowing the parser to

make incorrect assumptions about the syntactic structure of the input. These problems

and their solution are the main differences between the parsing algorithm of Schell and

that described here.

For example, consider the following grammar:

S :: "PASCAL" SP I "ALGOL" SA
SP :: ...(a pascal grammar)...
SA :: ...(an algol grammar)...

In this example, the interpretation of the entire string rests on the first token. But if

only the first token is changed, the nonterminals for the rest of the program will not be

broken up by the symbol list update phase of the parser. This language is still SLR(1),

for instance, if SP and SA are SLR(1).

A processor working on a segment in the middle of this program will enter a subset of

the parse states that include only Pascal items as soon as it shifts a Pascal-only symbol.

Unfortunately, the program may well be an Algol program. While this does not affect

the correctness of our algorithms, it does affect their efficiency. This language displays a

kind of non-locz. that makes parallel parsing difficult; languages that display locality

are easier to par , and are easier for people to read because there are frequent hints to

the reader about the context.

Under the above scenario, an incorrect nonterminal symbol will appear eventually

to a processor as an error entry in the parse tables. It is not a true error because it does

not necessarily represent an incorrect program.

In order to efficiently distinguish between the various causes of finding and error

entry in the parse table, each parse tree node records the leftmost token in its yield.

33

The grammer is constrained to allow no c-deriving nonterminals. Now, when an error

occurs, the processor can distinguish these three cases:

if the input symbol is a nonterminal, and there is a valid action in the current

state for the first token of its yield, then the reduction represented by the input

nonterminal is not one the current parser would have chosen. The reduction was

made in the old parse tree or by a parser to the right. The input symbol is

therefore disassembled and prepended to the current processor's input.

* if the input token is a terminal t, or a nonterminial with t as its leftmost terminal

symbol, and the top of the stack is a nonterminal n, and and t FOLLOW(n)

then the top of the stack is not a reduction that would have been chosen by the

local SLR(1) parser. Therefore the top of the stack is popped, disassembled, and

prepended to the input.

* in any other case, an invalid nonterminal symbol has been shifted earlier (or

possibly the program is in error). The symbols .on the stack are passed to the

processor to the left, and the current processor resumes parsing starting with

super-initial state on the remaining input. (The idea is to pass the problem on to

a processor which is likely to have more context with which to solve it.) If this

is the leftmost processor, then a genuine error has been recognized, and normal

error recovery is invoked.

The correctness of the parsing algorithm follows from the correctness of Schell's

[1979] parallel parsing algorithm. The only difference is the existence of incorrect non-

terminals in the input symbol stream. The proof assumes the grammar is SLR(1) and

the input program is in the language.

34

Theorem 1 The parsing algorithm presented here constiucts a correct derivation for

the input program.

Proof: Because the leftmost processor breaks up old nonterminals from the top of the

stack when it detects an error, the parse will be correct if the leftmost processor never

lets an erroneous nonterminal get past the top of its parse stack. By contradiction, it

can be shown this will never happen. Assume the leftmost processor shifts some symbol

s onto the stack above the erroneous symbol t while parsing a correct program. Let

w be the symbols corresponding to the stack contents below t. Then wts is the prefix

of a sentential form (the prefix of some valid program in the language). The language

is unambiguous because the grammar is SLR(1), and there are no e-deriving nontermi-

nals, so a sequential parser would construct the same derivation. This contradicts the

assumption that the symbol t is incorrect. 0

2.5.7 List Productions

One rough estimate for a lower bound on the parsing time is the depth of the newly

constructed portions of the parse tree. While the nesting structure of typical programs

is probably small, the parse tree can be much deeper due to syntactic lists. The straight-

forward method for parsing lists induces a linear depth parse tree, and this will result

in a linear parsing time for a program consisting entirely of a single list.

The standard way to represent lists of items in an LR-based grammar is using a

left-recursive rule:

<list> ::= <item>
<list> := <list> <item>

This causes the parser to construct a syntax tree that is linear depth in the length

of the list. This is unfortunate for our parallel parser, because its execution time has

35

a component that is linear in the depth of the newly constructed portions of the-parse

tree. We expect that syntactic lists are a common cause of deep parse trees in typical

computer programs. To improve parsing efficiency for long lists of syntactic items, we

allow special list productions. All right and left-recursive lists may be replaced in the

grammar by an application of this special rule form and a few "helper" productions.

For example, the productions

<stmt> :: BEGIN END
<stmt> :: BEGIN <stmt_list> END
<stmtlist> ::= <stmt>
<stmt-list> : =<stmt_list> 1 ; <stmt>

may be replaced by

<stmt> :: BEGIN END
<stmt> : BEGIN <stmt> END
<stmt> :: BEGIN <stmtlist> <stmt> END
<stmt-list> : =<stmt> ;1

<stmtlist> <stmt.list> <stmt.list>

In general, list productions are specified as follows:

<list> : := <list> <list>

This form is easily recognized by the parser builder as a special case. It describes

a syntactic list that derives one or more of the syntactic item on the right hand side.

We do not allow zero items because our parsing algorithm assumes that the grammer

is constrained to allow no -deriving nonterminals. While more complicated forms of

list productions might be allowed, this restricted form allows a fairly simple correctness

proof and analysis.

Although this production is ambiguous, it has the desirable property that is describes

all binary syntax trees with the items at the leaves. The strategy for efficient parsing

will be to maintain these trees'internally as balanced binary trees [Myers, 1984], as if

36

the parse had constructed a fully balanced derivation. To a large extent; the increase

in efficiency will be due to the ability of the parser to actually construct a balanced

derivation.

Of course, we must deal with the ambiguities that are introduced by the produc-

tions. These new productions are handled during state construction exactly as other

productions, with the following exceptions:

* The item

[<list> ::< list> * <list>]

is not included in the super-initial state. This allows the local processor to fully

process all adjacent items appearing in its input.

* If a state contains the item

E <list> :: <list> <list> 3)

then the item

[<list>::= * <item>]

is removed from the state. This resolves a potential shift-reduce conflict and allows

the local processor to fully reduce its items as would a sequential left-recursive

parser.

• During parsing, a reduction by the rule

E <list> ::= <list> <list> J

causes the join, or concatenation, of two balanced structures, and results in the

creation of a single balanced tree structure. The resulting abstract parse tree does

not necessarily represent the actual derivation which the parser evaluated due

to the rebalancing that may occur, but the resulting parse tree remains a valid

representation of the list.

37

These rules allow a local processor to fully reduce all adjacent items appearing in its

input into a single list nonterminal, and resolve all ambiguities introduced by the list

productions. By an extension of the proof of correctness in previous sections, it.can be

shown that the resulting parser correctly parses only strings in the language.

2.6 Error Detection and Recovery

The error recovery algorithm described by Graham and Rhodes [1975] and later refined

by Penello and DeRemer [1978] is appropriate for error recovery in our parser, since the

required "recovery states" are a subset of the states that were added for parallel parsing

by Schell [1979].

Because the parser is incremental, it is important to maintain the correspondence

between the parse tree and the program text. Therefore, if tokens are inserted into or

deleted from the symbol list as a result of error recovery, the source file should similarly

be modified.

Alternatively, a change can be made only temporarily on a copy of the symbol list, in

which case a syntax error detected in the parsing phase will result in a symbol list that

has not been fully condensed to the start symbol. Since the symbol list is represented

using an applicative data structure, the copy can be created and modified with little

overhead. This unmodified symbol list can still be used without any problem as the old

parse tree for the next compilation.

2.7 Complexity Analysis

We consider the processor and time complexity of the algorithms described in this

chapter, as well as the processor-time product, since that is a measure of the parallel

efficiency, or speedup, that may be observed in the asymptotic case. We demonstrate

38

that our algorithms have polylogarithmic execution time and an optimal processor-time

product.

2.7.1 Fragment List Construction

Theorem 2 The time required for the procedure translate is O(log3 m) in the length

of its input, the edit log.

Proof: The split-fragment-list function requires O(log f) time where f is the number

of fragments. The procedure compose-fragments recurses to a depth of O(logf), per-

forming a constant number of split or concatenation operations at each step, giving a

running time of 0(log2 f). The full translation recurses to 0(log m) depth, where there

are-m editing actions.

Because each editing action generates at most two fragments, f = 0(m). Translation

uses a constant number of applications at each recursion level, so the parallel running

time of the entire translation algorithm is O(log3 m). 3

Notice that the complexity is independent of the size of the associated program

source file.

Theorem 3 The maximum number of processors used in translate is O(m) in the

size of the edit log.

Proof: The proof is by induction on the size of the fragment list. For m = 1, the

procedure computes the result directly and returns, using only 1 processor. For m > 1

edit actions, the edit log is divided into two smaller lists of sizej and k, where j+k = m.

The recursion in step 3 uses j + k processors by the induction hypothesis, and compose-

fragments uses O(k) processors by a similar argument, so the total number of processors

used is O(m). 0

39

Theorem 4 The procedure translate can be performed in PT = O(mlogm), which

is optimal.

Proof: It can be shown by problem reduction from the (integer) sorting problem that

a sequential implementation of fragment list construction requires O(mlogm) time.

Consider a sorting problem in which the input is a list of integers (ai), 1 < i < m, and in

which no two ai are equal. From this an edit log of length 2n can be constructed in O(n)

time in which ai is translated into two edit actions - delete line at position ai followed by

insert line at position ai. After this is translated into a fragment list, the fragment list

can be translated in linear time into a solution to the sorting problem. Each carry-over

fragment is ignored, and each insertion fragment describes a contiguous range of integers

which should be output. General sorting is known to require O(m log m) sequential time,

so fragment list construction also requires 0(m log m) sequential'time.

We can reduce the processor requirement of the parallel algorithm by processing

O(log2 m) editing actions sequentially on each of O(m/ log 2 m) processors, and use the

parallel algorithm only to combine these results. Using an obvious sequential algorithm

locally, each processor can translate its editing actions in O(log2 m loglog m) time, and

the time required to combine the results remains 0(log3 m). Thus, when O(n/ log2 M)

processors are used the processor-time product is 0(mlogm), which is the same as the

sequential time and is therefore optimal. 0

2.7.2 Symbol List Update Algorithm

Definition 1 (Tree Depth) Let d(n) be the depth of the parse tree.

There are two main factors that contribute to the depth of the parse tree: the nesting

depth of the program and the length of lists appearing in the program. A single list

of length n will generate a balanced tree of depth O(logn). A program with nesting

40

depth k cannot be parsed by techniques that construct* the parse tree botton-up in

less than O(k) time. We will assume that the tree depth is some function d(n) of the

length of the program, and parameterize the analysis in terms of this function. Ideally,

d(n) = O(logn).

The complexity of updating the symbol list depends critically on the depth .of the

parse tree. Because list productions produce more balanced and therefore shallower

parse trees than conventional grammars for lists, their use can improve the performance

of the symbol list construction.

Theorem 5 The time complexity of symbol list construction is O(log m(log n + log m +

d(n))).

Proof: The update-symbol-list algorithm recurses to a depth of O(log m) in step 5 when

there are m fragments in the fragment list. Step 1 takes O(logn) time in the length

of the program and step 2 takes constant time. Step 3 takes O(logm) time and step

4 takes O(d(n)) time. The time complexity of symbol list construction is therefore

0(log m(log n + log m + d(n))), which dominates the total running time of the symbol

list update. 0

If we assume d(n) = 0(logn) and m = 0(n), this gives a running time of 0(log2 n).

Theorem 6 The number of processors used in update-symbol-list is O(n).

Proof: The proof is by induction on the length of the fragment list. For n - 1, the

procedure uses only one processor. For n > 1, step 2 divides the fragment list into two

parts of length j and k, where j + k = n. The recursion in step 5 uses j + k processors

by the induction hypothesis, so the total number of processors used is O(n). 0

41

2.7.3 Complexity of Parsing

Schell's parsing algorithm requires Q2(v/') time because no processors drop out of the

computation. We require that the parse takes place in O(.log2p) distinct phases when

using p processors. Between phases, every other processor will drop out of the compu-'

tation and pass the symbols from its stack to the remaining active processor to its left.

In the final phase, the remaining processor, which is the processor that began on the

initial symbols of the program, will complete the parse with the final symbols of the

program.

Upper bounds for speedup in parallel parsing based on modeling [Cohen and Kolon-

der, 1985 and simulation [Sarkar and Deo, 1986; Ligett et al., 1982; Schell, 1979] would

appear to be directly applicable to our algorithm. Two crucial constraints are the depth

of the parse tree and the locality of a language, discussed in Section 2.5.6, which may

have a large impact on the actual efficiency. We will parameterize the parsing complexity

in terms of these.

In addition, the extent to which constructs from the previous parse tree can be used

without modification affects the parsing speed in the parallel incremenial case. The rest

of the analysis here is for the parallel, non-incremental case. We begin with a definition

of the other major factor limiting parallelism of this parsing technique.

Definition 2 (Locality) Let I be the locality of the program being compiled: this is the

number of correct reductions that a processor, given an arbitrary segment of the program

as input, will fail to make (because of insufficient context) but for which it has all of the

symbols in its input.

The locality is as much a property of the language as of the program. A language

discussed in the next chapter has I = 0(1) locality for every string in the program. We

will treat locality as some function l(n) of the length of the program.

42

Each processor is able to fully reduce its subset of symbols in a list once it is past the

initial 0(1(n)) symbols, excluding the final symbol, for which the local processor may

not have the look-ahead to resolve a conflict. The processor requires time proportional

to the length of its input multiplied by O(logn) to balance a possible list upon each

reduction by a list production. We need to bound the length of the fully reduced portion

of the symbol list for the complexity analysis.

Lemma 1 The minimal exact cover of a contiguous set of k leaves in a tree of size n

and bounded fanout is of size 0(d(n)), where d(n) is the depth of the tree.

Proof: Consider the set of nodes on a path through the tree from the first to the last

leaves in the set. All nodes on the minimal cover come either from this set or direct

children of this set. The path length is O(d(n)) and the number of children is O(d(n))

because the tree is bounded fanout. 03

Lemma 2 At the end of each phase of parsing, each processor will have O(s(n)) symbols

remaining on its stack, where s(n) = d(n) + l(n), a measure of the two main sequential

constraints to this method of parsing.

Proof: By Lemma 1, a processor that can make all reductions on its input symbol

list will leave a list of size 0(d(n)). Each correct reduction decreases the number of

symbols in the list by a constant number equal to the length of the right hand side of

the production by which the parser is performing the reduction. Thus, failing to reduce

by l(n) productions generates 0(1(n)) extra symbols, in the reduced symbol list. 1

The size of the symbol list at the end of each phase is also the size of the input symbol

list that each processor must process at the beginning of each non-initial parsing phase.

Given p(n) processors, we can compute the time required for each processor to process

43

its portion of the input sequentially, and the time required for each of the 0(logp(n))

merging stages.

Theorem 7 The time to parse a program of length n with sequential constraint s(in)

and using p(n) processors is O(n/p(n) + s(n) log n log p(n)).

Proof: The first stage requires each processor to process O(n/p(n)) tokens of the input

program. Each reduction requires O(log n) time because it may be a list production

and require balancing, so the total time is 0(nlogn/p(n)). However, we can reduce

this time by failing to balance at every reduction, and only balancing the final version

of each list. A balanced binary tree can be constructed sequentially in time O(k) from

a list of length k, so this reduces the time complexity of the first phase to O(n/p(n)).

The remaining phases are more interesting. When two processors combine their

symbol lists, the processor on the left continues its parse on the symbols remaining

from the stack of the processor on the right. The time to do this is bounded by the

time to balance a possible list production for each symbol in the list, that is D(log n),

multiplied by the number of symbols in a list, which is O(s(n)) by Lemma 2. Thus the

total time for one merge stage is 0(s(n)logn). There are 0(logp(n)) merge stages, so

the total parsing time after the first stage is 0(s(n)logp(n)logn). 0

Corollary 1 If s(n) = O(logn), and p(n) = 0(n/ log3 n), we obtain T(n) = O(log3 n),

and the processor-time product PT(n) = O(n), which is optimal.

This shows that if we can bound the locality and tree depth, we can choose a bound

on the number of processors that allows us to parse with an optimal processor-time

product.

44

3 Parallel Separate Compilation

At first glance, parallel separate compilation would seem to be unrelated to parallel in-

cremental compilation. In fact, parallel separate compilation is an important technique

that effectively utilizes parallelism in incrementally compiling a program composed of

more than one source unit.

In addition, techniques for implementing the specialized semantics of the makefile

language are presented as simplified examples of algorithms that will be further devel-

oped in the following chapter on general programming language semantics. Specifically,

this chapter illustrates the use of list productions in language description, discusses the

representation of a symbol table, presents algorithms for efficiently determining what

has changed after a reparse in order to update the symbol table, and discusses error

reporting and recovery.

3.1 Introduction

Many programming languages have constructs that allow a single program to be ex-

pressed as a number of separate source units. Some languages, such as FORTRAN and

its variants, do not perform type checking across source unit boundaries. For these

languages a great deal of large-grain parallelism in compilation may be exploited by

compiling all of the source files simultaneously. The amount of parallelism that we may

45

exploit is influenced solely by the organizational decisions made by the program author,

but fortunately typical large programs are composed of a many of source files.

We can avoid compiling each source file that has not changed since its last compila-

tion to achieve incremental processing at a very course grain. For FORTRAN, we may

simply compare the date that the source file was last modified with the date that the

object file was written to decide if a compilation unit needs to be recompiled. This is

incremental compilation at a very course grain.

The more interesting cases are languages in which source files or compiled sources

(object files) may be interdependent. The programming language C, for instance, sup-

ports include files that are textually included into the source program. Since include

files may include other files, this leads to an arbitrarily deep dependency graph. How-

ever, it is only the C source files that need to be compiled, and in general they may all

be compiled simultaneously because they are not interdependent.

A more interesting example is provided by the Mesa compiler and by some imple-

mentations of Ada and Modula-2. For these systems, special definitions or interface

source modules specify a strongly-typed interface between an implementation module

and its clients. The interface is compiled separately from the implementation. The

compiler reads the compiled interface files when compiling a package that imports its

definitions. Both the implementation of the package and any modules that depend on

it must be compiled after the interface because the compiler uses the type information

extracted from symbol tables in the precpmpiled interface.

The compilation of multi-source programs in these languages, and many other com-

putational tasks that are composed of a number of processing steps with intermediate

results, may be described in the specialized make [Feldman, 1979] language. A makefile

(a make source file) describes an acyclic dependency graph among a set of files, and

46

describes how to construct each dependent file from its prerequisites. This dependency

graph is an instance of a datafiow graph, a directed acyclic graph with values com-

puted at each node and edges representing dependencies. This chapter considers how

a dataflow dependency graph may be constructed incrementally and in parallel from

its description in a makefile and how the graph may be evaluated (i.e. source files

compiled) incrementally and in parallel.

In the next chapter a dataflow graph is created by another technique: an attribute

grammar for a particular parse tree. The symbol table data structure described here is

used as a basis for symbol tables there.

3.2 Related Work

The make utility [Feldman, 1979] is a method for maintaining programs composed of

multiple source files. Make takes as input a makefile describing the dependency graph

among components of the system, and rules or commands for reconstructing components

once the prerequisite files have been constructed. When it is used to recompile programs

after changes, the make utility represents incremental compilation at the granularity of

a source file. Makefiles, or make source files, are written in a special language designed

to concisely express the dataflow graphs that arise in separate compilation.

The problem of optimal parallel scheduling of dataflow graphs is NP-complete full-

man, 1976; Garey and Johnson, 1979]. However, it is known that an arbitrary schedule

will evaluate the graph within twice the time of an optimal schedule [Graham, 1976].

This optimization problem continues to be pursued by the operations research commu-

nity, but because it can affect the time complexity by at most a constant factor, we do

not consider the problem in detail.

The idea of a parallel make facility is not new. A number of multiprocessor manufac-

47

program: main.o subroutines.o
Id -o program \

main. o
subroutines.o -Ic

main.o: main.c subroutines.h
cc -c main.c

subroutines.o: subroutines.c subroutines.h
cc -c subroutines.c

Figure 3.1: Simplified Example of a Makefile

turers supply concurrent make utilities as a standard part of their software distribution.

In addition, the Free Software Foundation's make utility has hooks for concurrency.

Unfortunately, little has appeared in the research literature describing these programs

or their underlying algorithms.

3.3 The Makefile language

The make utility can be thought of as a compiler for a specialized language, used to

describe the dataflow graph inherent in compiling a multi-source program. We consider

a simplified version of the makefile language and show how it can be processed in parallel

and incrementally. This is a matter of maintaining and scheduling the dataflow graph.

A makefile program (hereafter called a makefile) is composed of a number of rules.

Each rule describes a single target file: the file is named, followed by a colon and a

list of files on which it depends. Subsequent lines give commands used to construct the

target from its prerequisites; this list of commands ends at an empty line. Figure 3.1 is

a simplified example makefile that describes how to construct a C target program from

its two sources and a single include file.

Lexically, the makefile language is very simple. Tokens are contiguous sets of print-

48

able characters separated by spaces or tabs. A newline serves simply as a token sepa-

rator, like a space, when escaped with a backslash; otherwise the newline is a special

token. Each rule ends with a blank line. We arbitrarily limit lines to 80 characters in

length. Because comments do not cross line boundaries, and because source lines have

a constant length bound, we can use the simplified scanning algorithm of the previous

chapter that starts scanning at line boundaries to scan in constant time using a linear

number of processors.

3.4 Parsing the Makefile language

The syntactic structure of the language is straightforward. Figure 3.2 gives a grammar

for the Makefile language that exploits list productions; the terminal symbol NL repre-

sents a newline. With the exception of the special productions to represent lists, this

grammar is nonrecursive. Therefore, a makefile can have at most a constant nesting

depth, clearly within the O(log n) nesting depth assumed for the parsing time analysis.

Furthermore, this grammar illustrates a strong form of grammatical'locality that

is also useful: every adjacent pair of IDs appearing in the input can be reduced to an

<ID List>. The only inadequate states in which a parsing processor will not be able to

proceed will be due to conflicts between the right hand side of the <Command> production

and the middle of the <Rule> productions (after the symbols <ID List> NL). In this

case a processor will pass at most two symbols to the processor to its left. Because

the processor will continue in a state that is also in the sequential SLR(1) automaton,

the node will never again encounter an inadequate. state. Similarly, because of the

nonrecursive grammar, a reductibn with insufficient stack can only happen a constant

number of times, each time passing a constant number of symbols to the parser on the

left. Therefore this makefile language can be parsed in parallel as efficiently as a simple

list, in O(log2 n) time using O(n/ log2 n) processors in the worst case.

49

/

<Start>
<EOF>

I <Rule>
I <Rule List>

<Rule List>
<Rule List> <Rule List>

I <Rule>
<Rule>

ID ':' <ID List> NL <Command List> NL

<Command List>
<Command List> <Command List>

I <Command>
<Command>

<ID List> NL
<ID List>

<ID List> <ID List>
I ID

Figure 3.2: Grammar for the Makefile language

3.5 Parallel Makefile semantic analysis

As well as being syntactically simple, the Makefile language is semantically simple. Each

rule defines a semantic attribute that is a software component or file to be constructed,

names those other components upon which it depends, and provides code to bring it up

to date when the prerequisites change.

For each component of the system the makefile contains a rule that appears as

follows:

component: prereql prereq2

commands

This rule says that in order to construct component, first the prerequisite files

prereql and prereq2 must be constructed. Then, the given commands will construct

the file component. It is the responsibility of the author of a makefile to ensure that the

50

commands do in fact create the file named component or update the file's recorded last

time written. This requirement is needed because the make utility uses the file's last

time written to determine what software components need to be reconstructed after a

change. If a component is newer than its prerequisites, and its prerequisites are up to

date, then the component is considered up-to-date.

The makefile describes a dependency (directed) graph.' To be correct, the graph

must be acyclic. The usual implementation of a make utility performs a depth-first

traversal of the dependency graph described by the makefile, starting at a user-specified

root component, to make the component up-to-date. At each component, the utility

(recursively) ensures that the prerequisites are either leaves or are up-to-date. The

leaves of the dependency graph are the true source files in the system, for which there

are no prerequisites. If any of the prerequisites are more recent than the component

being considered, the component is reconstructed using the commands given in its rule.

There is some freedom in this description because there is more than onb depth-first

ordering. The most common ordering used in implementations of make is a sequential

enumeration of prerequisites in the order in which they appearin the rule. However, any

topological ordering of components could be used to reconstruct a software component.

A parallel implementation of make may take advantage of this freedom from se-

quential constraints. The strategy is to schedule the processing of components using an

algorithm analogous to topological sort. As an optimization, the scheduler can consider

only components and dependencies that are visited by a transitive closure of changed

source components. This optimization is more important later, for semantic processing

of general programming languages, because the reduction in work is more significant

due to the finer grain of the attributes.

The dependency graph may be constructed in two passes. The first pass inserts all

51

of the (name, component) pairs into a single symbol table. Each component's semantic

value may be represented in the table as the current time stamp of its file. The second

pass will read the rule lines and link up references with their corresponding definition,

thereby constructing the dependency graph within the symbol table. The second pass

does not need to wait for symbol table entries to become defined, nor insert them,

because the symbol table (except for the dependent lists) has been constructed fully in

the first pass. The second pass creates the dependent list for each component, thereby

creating a representation of the dependence graph. The dependence lists are represented

as a parallel search structure.

When this second pass finishes, the dependence graph is complete and may be used

to schedule component evaluation. Parallel transitive closure is used to identify all

components affected by changed components or rules in time dependent only on the

depth of the affected dependency subgraph. (Of course, we would need some way

to efficiently identify which source components have changed; this is discussed later.)

Then these affected components are scheduled using a parallel scheduler based on a

straightforward variant of the standard topological sort algorithm.

The remainder of this chapter considers parallel incremental Makefile evaluation.

We have already seen how lexical and syntactic analysis can be performed, but incre-

mental construction of the symbol table and dependency graph is more complex. Once

the symbol table, and the dependency graph represented therein, is constructed, it is

straightforward to identify affected components using a transitive closure and schedule

reevaluation based on a modified topological sort algorithm.

3.6 Incremental update of Makefile symbol table

From a practical point of view, there is little to be gained from incrementally processing

Makefiles because they are typically small with respect to the size of the application

52

described. However, the techniques developed in this chapter will be formalized in the

framework of attribute grammars and directly applied in the next chapter to the seman-

tic analysis of more general programming languages. In short, these techniques present

an introduction to and example of algorithms for the parallel incremental semantic

analysis of more general programming languages.

The key to incremental parallel evaluation of a makefile is the maintenance of the

symbol table, because the symbol table contains an explicit representation of the de-

pendency graph. The symbol table may be updated by systematically identifying the

parts of the Makefile program that have been deleted, inserted, and otherwise edited.

Our strategy for error detection and recovery is an integral and necessary part of

the updating algorithm. It is necessary to have a consistent internal representation for

even erroneous programs so that, when the user corrects the error, there is a meaningful

'previous symbol table' state from which incremental update may take place. We allow

the symbol table to contain a number of definitions for each software component, so

that there is a consistent symbol table state for the two classes of errors, undefined and

multiply defined symbols.

The two program trees are recursively traversed simultaneously, subtrees in parallel.

If two subtrees are pointers to the same memory location, then they are identical; the

subtree was borrowed from the old version of the parse tree. Otherwise, structurally

identical nonterminal nodes are considered a change, and their children are recursively

compared. Structurally different nonterminals are treated as an insertion/deletion pair.

Terminals are either identical or changed, depending on their value.

In the case of the makefile semantics, deleted rules are simply removed from the

definition list of the symbol. If this leaves an undefined reference (that is, if the depen-

dent list is nonempty), then the symbol is added to the list of undefined symbols. If

53

this leaves exactly one definition for the symbol, then the symbol is removed from the

multiple definition list, if necessary. The symbol table entry is not unlocked until the

undefined and multiply defined lists have been modified.

Inserted rules have their definition added to the definition list of the symbol, adding-

the symbol to the symbol table if necessary. If there are multiple definitions for the

symbol, it is added to the multiply defined symbol list, if not already there. If it is the

only definition, it is removed from the undefined list if necessary.

Changed rules are more interesting. These are rules that have been neither deleted

nor inserted into the makefile, but whose description has been edited. We want to

neither delete nor insert them into the symbol table'. Instead, we want to evaluate the

changes in the rule, and update the dependency graph accordingly, thus processing only

what has changed.

We may recursively apply this strategy to determine the difference between the

prerequisite lists in a rule that has been edited. For each deleted prerequisite, the name

of the component being defined is removed from the dependent list. Similarly, each

inserted prerequisite has the current component added to its prerequisite list.

There is a catch: the rule list and the prerequisite list, both parts of the program

tree, were parsed using list productions and are represented using balanced binary trees.

Two trees representing identical syntactic lists might be represented by vastly differing

parse trees! The straightforward technique described above, comparing trees node-

by-node based on nonterminal type and terminal value, simply cannot cope with two

semantically identical lists represented by different balanced trees. A specialized list

comparison technique is needed.

'Actually, in the case of Makefile semantics, we could treat a change as both an insertion and deletion.
For the purpose of more general programming language semantics, where large program parts nest, this
simple strategy would require the unnecessary processing of large portions of the program that might
not have changed.

54

The lists appearing in a makefile programs have the useful property that they are

order insensitive. A set of rules given in any order defines the same dependency graph.

Similarly, there is no semantic meaning in the order in a list of prerequisites presented

in a rule. Thus, it suffices to compare the set of items in a list, independent of the list

structure. Because programming languages that allow forward references have order

independence in their declaration list, the techniques developed here will be useful there

as- well.

To enumerate the differences between the sets of items in two balanced list repre-

sentations, we have developed a specialized list comparison algorithm that is described

in detail in the next section. The algorithm compares two keyed lists represented as

balanced trees and which may share structure, and enumerates inserted, deleted, and

changed nodes; changed nodes are defined as those nodes with the same key, but with

differing parse trees. The key, for the purposes of a makefile, is the component name in

a component list or the name of a prerequisite in the list of prerequisites.

3.7 List Comparison

We describe a list comparison algorithm in which two syntactic lists, represented as

balanced binary parse trees, and containing keys2 at each item in the list, are compared.

The previous and current versions of a list's parse tree are contrasted to determine which

elements were inserted, deleted, or otherwise edited/changed in a list. Since the parser

constructs the parse tree in an applicative manner, both the old and new parse trees are

available to this algorithm. To support this tree comparison, list nodes of the parse tree

are augmented with a tag field which is filled with a sequence number when the node

is created during parsing. Each invocation of the compiler places the current sequence

2These keys are used to index a search structure, and for our application are the name of the target
in a rule in a rule list or the name in a prerequisite list.

55

number in all newly constructed syntactic list nodes (nodes for nonterminals that have

a list definition as introduced in the previous chapter) during parsing. The sequence

number is incremented between compilations.

These sequence numbers can be used to discover that a large sublist of the syntactic

list has not changed. If a node in the list's balanced tree representation has a sequence

number that is less than the current sequence number, then the node and all of its

children are borrowed from the old parse tree. This fact can be used to limit the

number of elements of the list that are examined during the list comparison process.

The list comparison takes as input the old and new parse trees representing a list

construct, and procedures for processing deleted, inserted, and changed elements of the

list. In addition, it uses the name attribute from each list element as a key. The name

is used to determine when the deletion of one element and the insertion of another is to

be considered a change rather than independent operation; the rule we use is that this

pair of operations is a change if the names are the same.

The tkee comparison uses two auxiliary (concurrent linear) hash tables. The sublist

table will be used to discover which list elements were deleted from the previous version

of the list. The nnme table will be used to distinguish between elements that are new

and those that were edited.

First, the data structure for a parse tree representing a list is assumed to be repre-

sented as in figure 3.7. Note that items in the list contain a name field which is used by

the list comparison algorithm to determine when an insertion and a deletion together

form a change pair.

The algorithm proceeds in three stages, first identifying what is on the new tree,

then comparing it with what is on the old tree, and finally enumerating the results of

the comparison in parallel.

56

type
(* this illustrates tree comparison code corresponding to
(* The productions List List List I Item
tree-node = record

sequence: integer; (* seq. num when tree node generated *)
case node-type: * of
list =>

(* nonterminal attributes *)
case production: * of

first => listi, list2: -tree-node;
second => item: -tree-node;
end;

item =>
name: string; (* key for list comparison *)
(* additional subtrees and attributes *)

(* additional variants *)
end;

var
current-seq:.integer; (* curr. seq number for tree nodes *)

Figure 3.3: Data Structure for Tree Comparison

tree.compare(
old, new: pointer to list tree.node,
inserted, deleted: procedure(pointer to item tree-node),
changed: procedure(old, new: pointer to item treenode))

begin
sublist-table: concurrent search structure = empty;
name-table: concurrent search structure = empty;

stepl(new, sublist.table, name.table);

step2(old, sublist.table, name-table, deleted, changed);

step3(sublist.table, name.table, inserted);

end;

Figure 3.4: Tree List Comparison Algorithm

57

procedure stepl(
new: pointer to tree-node,
var sublisttable, name-table: concurrent search structure)

begin
case (new'.node.type) of

list => begin

if (new-.sequence = current-seq) then cobegin
stepl(new.listl, sublist-table, name-table);
stepl(new.list2, sublist-table, name-table);
end

else sublisttable.add(new, new);
end;

item => begin

if (new'.sequence = current.seq)

then nametable.add(new'.name, new)

else sublisttable.add(new, new);
end;

end;
end;

Figure 3.5: Tree Comparison Algorithm: step 1

The tree comparison algorithm begins by enumerating the nodes of the new list that

were created during the most recent reparse. These nodes are the ones that are either

new or reflect changed source text. This first pass fills the name-table search structure

with the new leaves of the list, keyed by name. It also constructs a sublist table that

contains the topmost node of each subtree that is entirely borrowed from the old version

of the list.

When the first step ends, the sublist table contains all nodes in the new list whose

sequence number is less than the curretit one and none of whose ancestors have old

sequence numbers. These are the nodes at the root of borrowed subtrees. The name

table will contain all items in the list that are not borrowed from the previous version

of the parse tree.

In the second step, the nodes of the old list are enumerated to determine which

58

procedure step2(
old: pointer to tree-node,
var sublist-table, name-table: concurrent search structure,
changed, deleted: procedure(pointer to item tree.node))

begin
if sublist-table.lookup(old) then begin

sublist.table.delete(old);
return;
end

else case old^.node.type of
list => cobegin

step2(old'.listl, sublist-table, deleted);
step2(old^.list2, sublist-table, deleted);
end;

item => begin

new: pointer to tree node = name-table.lookup(old'.name);
if new != NIL then begin

changed(old, new);
name.table.delete(old .name);
end

else deleted(old);
end

end
end;

Figure 3.6: Tree Comparison Algorithm: step 2

59

of them were actually in the old list. This is necessary because old nodes were not

necessarily in the same list in the old version of the program. It is possible for a node

to have an old sequence value and yet not be found in the old list. This is the case

when the user edits the boundaries between lists appearing in the target program. This

phase detects and correctly deals with this possibility.

Sublists that were in common between the old and new lists need not be processed

further. Leaves of the old tree, none of whose ancestors appear in the new tree, are

processed as deleted or chariged if their names also appear in new items, as found in

the name table.

At the end of this step of list comparison, the sublist table contains exactly those

subtrees that were in the new but not old list, but were from the old tree. These will

be treated as insertions in step 3. The name table contains items whose names did

not appear in the old list. Items whose names were in the old and new list have been.

processed as changed, and all deletions are processed here.

The third and final step of list comparison processes all other nodes of the new tree

as inserted. These are the remaining items in the sublist table, which are borrowed from

the old subtree but not the old list, and items in the name table, which are items with

names that did not appear in the old list.

3.8 Representing the Makefile symbol table

The makefile symbol table is a search structure that represents the naming environment

for the objects described in a makefile program. Since the makefile language supports

only a single global scope, a single concurrent search structure suffices.

Each entry is keyed by the name of its component and contains a list of its definitions.

There may be more (or less) than one definition in cases of an erroneous makefile; the

60

procedure insert-leaves(
node: pointer to tree-node,
inserted: procedure(pointer to item tree.node))

begin
case node-.nodetype of

list => cobegin

insert.leaves(node'.listl, inserted);
insert-leaves(node'.list2, inserted);
end;

item => inserted(node);
end;

end;

procedure step3(
sublist-table, name-table: concurrent search structure,
inserted: procedure(pointer to item tree-node))

begin
cobegin

foreach node: tree-node on sublist-table do in parallel
insert-leaves(node, inserted);
end;

foreach node: tree-node on name-table do in parallel
insert.leaves(node, inserted);

end
end

end;

Figure 3.7: Tree Comparison Algorithm: step 3

61

list allows us to incrementally handle this case gracefully. Each entry also contains a

concurrent search structure to represent the set of prerequisites for the component.

Finally, a flag on each entry is used to reflect the fact that a component is out of

date. These flags are set by transitive closure from changed components or rules, and

only flagged items are scheduled for reevaluation.

To support error reporting and recovery, there is also a global table of multiply-

defined and one of undefined components. These are updated when the symbol table is

updated, and evaluation of the dependency graph will only proceed when both of these

lists are empty.

3.9 Error Recovery

Since we maintain a list of undefiied symbols, and a list of multiply defined symbol,

error reporting is simply a matter of traversing these lists.

Error recovery is similarly straightforward. The symbol table contains a list of

definitions for each component, one element for each definition seen. This provides

a meaningful internal state of the symbol table for semantically erroneous Makefiles.

When the user corrects these errors, each component will have exactly one definition.

Thus, symbol tables even for semantically erroneous Makefiles may be used as the

previous version during updates.

3.10 Scheduling the dataflow graph

Scheduling evaluation of the attribute graph can be performed using a straightforward

parallel analog to the standard topological sorting algorithm. Once all file dates are

checked, each component that is older than any of its immediate prerequisites is marked.

Then, using a parallel transitive closure, components that depend on these (directly or

62

indirectly) are marked. This determines the set of components that need to be recon-

structed. Each of these components is tagged with a dependency count, the number

of marked values on which it depends. A parallel queue is maintained of components

ready to be remade; initially this queue contains "leaf" components that can be remade

immediately. Processors take tasks from this queue and begin processing them in paral-

lel. When a processor completes updating a component, it decrements the dependency

count of any components that depend on the one just completed. If this count reaches

zero for other components, they are added to the ready queue, because the components

on which they depend are all up-to-date.

3.11 Conclusions

We have described a strategy for incrementally maintaining and "compiling" a makefile

program, based on .the use of a specialized list comparison algorithm for the single

scope's declaration list. In the next chapter, we generalize this technique and provide

a notation to express it formally within the context of an attribute grammar, where it

may be used to describe the semantics of more general programming languages. We

also extend the techniques of this chapter to describe how to incrementally update

the symbol dependency graph inherent in the symbol take for a program in a language

described by a grammar that uses these extensions. As in this chapter, we will relate the

parallel complexity of the algorithms to features of the language and target program.

63

4 Semantics and Code Generation

We wish to do the same for semantic analysis that we did for lexical and syntactic

analysis: begin with a formal model that has been used in the generation of efficient

sequential compilers and derive a parallel implementation by modifying existing meth-

ods. However, the state of the art in formal methods for semantics is not sufficiently

advanced to admit translation from formal descriptions to a compiler that generates

efficient object programs, even in the sequential non-incremental case. Developing such

a formal model and method would be very valuable, but is beyond the scope of this

thesis.

We will begin with attribute grammars, a semi-formal model for semantics that has

been widely studied as a method for specifying compilers, and show how the method

may be modified to support efficient parallel incremental semantic analysis. Without

modification, attribute grammars require linear time to process the attributes repre-

senting the symbol table when only a single declaration is changed. We describe an

extension to the formalism, and algorithms for implementing this extension, that allow

sublinear time parallel incremental processing.

The time it takes to evaluate an attribute grammar in parallel is directly proportional

to the depth of the attribute dependency graph. Since the semantics of a program

depend (in general) on all of the nodes of its parse tree, and attributes are purely local,

a tree of linear depth necessarily generates an attribute dependency graph of linear

64

depth. Conventional techniques for attribute grammars generate linear depth attribute

grammars, and this problem has not been previously addressed. The main purpose of

this chapter is to identify and eliminate sources of linear depth dependency chains. We

show how the list productions introduced in the syntactic analysis chapter may be used

to define attribute grammars to solve many problems in code generation and semantic

analysis in parallel sublinear time.

Symbol tables and scope analysis pose a more difficult problem for parallel incremen-

tal semantic analysis. The simplest way to represent the symbol table in an attribute

grammar is as an aggregate attribute that is passed around and modified at each declara-

tion. Even hand-coded semantic analysis phases, implemented outside a formal system

such as attribute grammars, are usually implemented this way. This technique is inap-

propriate in a parallel compiler because it creates a sequential dependency between a

linear number of slightly different aggregates.

We separate scope analysis into three distinct phases. The first phase computes the

referencing environments, determining which identifier definitions are visible in which

regions of the source file. It does not evaluate the definitions of the symbols, because

doing so would require it to refer to the definitions of other identifiers, whose relevant

definition point is not yet known1 . The output of this phase is a data structure that can

be used to easily find the appropriate definition for a given identifier at a given location

in the parse tree. The later phases use this data structure to coordinate the linking of

identifier references with their definitions.

This chapter also discusses techniques for code generation, by which we mean in-

struction selection, variable and temporary allocation, assembly, and linking. Because

these tasks are so dependent on the target architecture and choice of intermediate

representation, we only discuss techniques that are widely applicable to a variety of

'This is what Seshadri et.al. (1988] describe as the DKY or doesn't know yet problem.

65

architectures.

4.1 Previous Work

Semantic analysis is perhaps the least understood facet of compiler theory. Lexical

and syntactic analysis have a long history of widely accepted formal methods and a

basis -in automata theory that we have been able to adapt to the unique requirements

of a parallel incremental compiler. On the other hand, there is no consensus among

the research community of a single formalism for describing the semanticstructure of

programming languages for compiler construction. Denotational semantics, the most

general and formal method for describing programming languages, is not yet useful as a

basis for efficient compiler development. Operational semantics impose on the primitives

an assumed knowledge of the features of the programming language being described or

details of an underlying interpreter, imply a particular method for implementation, or

only describe part of the semantics of a language.

4.1.1 Incremental Semantics

Among formalisms for semantics, attribute grammars are most commonly used because

of the ease with which they are translated into executable compilers. This formalism is

a result of the functional (side-effect free) values and the association of the computation

with the structure of the parse tree. Their ease of implementation is a direct result of

the fact that the description is algorithmic rather than declarative.

Attribute grammars are more of a programming language, or a way of organizing

computations, rather than a formal method for describing the semantics of a language.

It is a framework in which arbitrary values, or attributes, are associated with nodes

of a parse tree. Each attribute is described as a function of attributes of neighboring

nodes. Systems that use attribute grammars typically require that the dependency

66

graph among attributes is noncircular, so the attribute values may be computed by

a topological evaluation of the dependency graph. Other, stronger restrictions on an

attribute grammar may allow slightly more efficient evaluation algorithms.

Unfortunately, a simple attribute grammar description of the scoping structure of

a language is usually inefficient for incremental semantics. The two main problems are

long chains of copy values and the representation of aggregate values for symbol tables.

Both of these must be addressed to achieve reasonably efficient incremental evaluation.

There have been two basic strategies for dealing with the problem of long chains

of attribute copies. First, the implementation of the attribute grammar formalism can

maintain shortcuts for the copy chains automatically [Reps, 1982; Hoover and Teitel-

baum, 1986]. This solution relieves the compiler writer from being concerned with the

details of the solution.

The second approach is aggregates, which extends the attribute grammar formalism

by providing the compiler writer with a way to express relationships between attributes

that are not adjacent in the tree [Johnson and Fischer, 1982; Johnson, 1984; Beshers

and Campbell, 1985; Reps et al., 1986; Hoover and Teitelbaum, 1986]. An aggregate

is a collections of attributes that may be passed between tree nodes as an attribute,

but which contains a number of attributes that can be individually referenced. This

method can allow a more natural description of the programming language because an

aggregate can be used to represent the symbol table for a scope.

Various techniques have been used to improve the efficiency of incremental attribute

grammar evaluation for copy and aggregate values [Fischer et al., 1984; Hoover, 1987],

but these methods do not support the arbitrary structural changes to the parse tree that

are possible with a conventional text editor. The approach of combining incremental

parsing based upon a text paradigm with incremental evaluation of the attributes within

67

the reparsed program is new. We borrow many concepts and ideas, but few algorithms

from these researchers.

4.1.2 Incremental Code Generation

In some incremental environments, code generation is performed in the background

or on demand, when the code is first executed [Delisle et al., 1984]. Although some

systems will generate code only for changed statements [Fritzson, 1984] most regenerate

code for an entire changed procedure [Delisle et al., 1984; Schwartz et al., 1984]. Many

environments avoid the code generation issue by interpreting the program [Teitelbaum

et al., 1981].

The appropriate granularity for incremental code generation depends, among other

things, on the environment. Delisle et al. [1984] consider the problem of a target program

that is running on a physically remote machine. Because of the cost of changing the

program, minimal "patches" are sent when the program is changed. In this system, the

grain of incrementality is the statement, which incurs a large cost in space because the

code for each statement (and for blocks of statements) must be kept; in addition, there

is significant processing involved in patching new code into old. For instance, when a

variable declaration is deleted, it leaves a "hole" in the data area, which can be filled

later by newly declared variables. Similarly, if a statement is inserted into a section of

code where there is not enough room for the new code, then the code is placed elsewhere,

and a branch to (and back from) the misplaced code must be inserted.

The smallest possible granularity for incremental code generation is the expression,

but the smallest grain that has been used in the literature is the statement [Fritzson,

1982]. The reason is that, even when the selection of instructions has not changed, all

of the code after a changed statement must be moved to adjust to fit the size of the new

code for a statement. This is a result of a common design decision that the code for a

68

procedure should be contiguous.

Most implementations generate code for dn entire procedure when- part of the pro-

cedure has changed. The code generation is much simpler, and therefore potentially

faster. Also, this simplifies the earlier portions of the compiler by requiring incremental

processing of units no smaller than the procedure.

4.1.3 Parallel Semantics

An event-driven model is one technique for parallelizing semantics. In this model, the

availability of a semantic value triggers the computation of other values [Andre et al.,

1981; Banatre et al., 1979; Lipkie, 1979]. This is closely related to the use of Petri Nets

by Baer and Ellis [1977]. Although the intent of these projects was to help design and

understand sequential compilers, these techniques have been shown to extract a useful

amount of parallelism. However, the available parallelism in semantic analysis using

these techniques is limited by a small constant, because symbol table maintenance is

not parallel.

Researchers at the University of Toronto [Seshadri et al., 1987; Seshadri et al., 1988]

are taking a more wholistic approach to concurrency in compilation. In their model,

the program is divided up along natural boundaries in the program text, such as pro-

cedures or modules. Each section is then compiled through all phases by a devoted

processor. Symbol table processing, a necessarily nonlocal computation, is the most

communication-intensive of the compilation tasks and proceeds by the use of a shared

data structure. The processors communicate to construct and use this shared symbol

table. When a processor looks up an identifier in an enclosing context and it is not

found, it might be because the enclosing context has not been fully processed. In this

case, we do not know if we should search a more global scope or not. This is described as

the "doesn't know yet" problem, for which the authors present a number of alternative

69

solutions. Their basic solution is to wait for the needed scope to be completed, after

which the identifier can be looked up in that scope. If the definition is not found, it is

searched for in a more global scope. When an appropriate definition is finallyfound for

the referenced identifier, semantic processing can proceed.

There are two main drawbacks to this solution. First, the processor is not doing

useful work while it is waiting. The authors address this issue in a refinement to their

solution by allowing the processor to work on other semantic processing in its segment of

the program. While this will improve processor utilization and concurrency, it is at the

expense of increased synchronization overhead and memory utilization. Furthermore,

the processor may still run out of useful work to perform while waiting for a definition,

leaving the processor idle, perhaps because of a poorly balanced subdivision of the

program at the highest level.

The second major drawback is that a processor may wait for a scope to complete pro-

cessing, even though the needed definition is from a more global scope. In other words,

because the processor "doesn't kno,, yet" which scope. the identifier is declared in, it

must wait for processing to complete in any possible defining environment. This intro-

duces into the semantic processing an unnecessary delay and synchronization. Worse,

a problem that the authors do not consider is a circular dependency between scopes.

A scope that both imports one identifier and exports another will cause a circularity

between scopes. In this case, there is no ordering of processing scopes that will avoid

deadlock. Seshadri et.al. address the performance problem in a way that would solve

the deadlock problem, by considering an "Optimizing Symbol Table Search," in which

semantic analysis proceeds in two separate phases. The first phase, processed during

parsing, records a list of the defining scopes for each distinct identifier appearing in the

program, represented as a bit vector for efficiency. Then, during the second phase of

semantic processing, this list can be intersected (bitwise and-ed) with the list of parent

70

scopes to determine the correct defining scope for an identifier. The processor must still

wait for the identifier's relevant definition to be processed before proceeding with the

semantic analysis.

This optimization has the advantage that it will allow higher utilization of the pro-

cessors, but as we shall see it is at the expense of more work. Unfortunately, the

execution time of semantics using the "optimizing" table search is asymptotically no

better than (that is, within a constant factor of) a sequential implementation.

Consider the ideal situation for Seshadri's compiler, in which a program of length n

is divided into p procedures or modules of identical length; the program is divided along

these boundaries for processing. Each identifier appearing int the program will have

a bit vector associated with it of length p. Let us also assume that there are Sl(n/p)

identifiers appearing in each module (the number of identifiers being proportional to the

length of the text). Now, to process each identifier a string of p bits must be masked

and searched. This will take time f!(p) for each identifier, and time fS(pn/p) or Q(n)

for one entire module. Though the constant factor may help, this is no asymptotic

time improvement over uniprocessor compilation. The work done, P * T = Q(np), is

proportional to the number of processors used. We hope to do much better for such

well-balanced programs.

Attribute grammars have been used in the description of languages for the implemen-

tation of parallel semantic analysis [Boehm and Zwaenopoel, 1987]. Attribute grammars

are used because of the ease with which they are translated into executable compilers,

and the applicative values lend themselves well to parallel evaluation because of the

absence of side-effects.

Unfortunately, a conventional attribute grammar description of the scoping struc-

ture of a language is inefficient for parallel semantics. Declarations are processed in the

71

strictly sequential order imposed by the attribute grammar techniques. Although the

parallel attribute evaluator of Boehm and Zwaenopoel [1987] was able to achieve an

effective speedup for a small number of processors, their data show .declaration process-

ing to impose a sequential constraint on semantic analysis. We modify the attribute

grammar formalism in a way that allows the compiler to achieve effective speedup (that

is, more than a constant factor) even when the declarations are a constant fraction of

the program text.

Because the computatiohs specified by the attribute functions are arbitrary, we

cannot hope to parallelize them individually in any automatic way. While this might

be -an important source of practical parallelism in the compiler, each of these functions

would have to be parallelized using a technique specific to the function being computed.

This chapter considers several classes of attributes that are commonly used to implement

compilers, and describes techniques that improve the parallelism of their computation

by organizing the attribute grammar to allow maximal overlap between evaluation of

different attributes.

4.1.4 Parallel Code Generation

Many researchers have been able to successfully exploit parallelism in code generation.

Baer et. al. [1977] have shown that there is a great deal of available parallelism in

code generation. Vandevoorde [1988] had success with code generation; his compiler

was limited mainly by symbol table analysis for the small number of processors he had

available. One of his important contributions is WorkCrews [1988], a programming li-

brary based upon an abstraction that automatically clusters tasks in divide-and-conquer

style parallel algorithms with very small overhead.

72

4.2 Attribute Grammars

The research to date on using attribute grammars for parallel semantics show that there

are two major sources of sequential constraints: tree depth (as a result of long lists in

the source program) and symbol tables. We extend the attribute grammar formalism

to alleviate the two problems.

4.2.1 List Productions

Attributes can be associated with list productions just as for other productions. The

balanced form of the parse tree (and the desire to limit the depth of the attribute

dependency graph) implies a different paradigm for writing the attribute grammars.

Although the parse tree is ambiguous, the compiler writer wants the semantics defined

by the compiler, and expressed in the attribute grammar, to be unambiguous. We

describe two standard techniques for computing attributes of a list represented by a

balanced tree, and show how they may be used for problems occuring in semantic

analysis and code generation.

Our model of parsing complicates any incremental attribute grammar scheme. Nor-

mally, an unambiguous grammar is used to parse the program, so the generated parse

tree is unique. In this case the amount of change made to the structure of the source

program corresponds to the amount of change to the parse tree. However, we have

intentionally introduced an ambiguous grammar so that lists may be represented as

balanced binary trees. While this eliminates one source of deep attribute graphs (deep

parse trees), the structure of the parse tree, and therefore the structure of its underlying

attribute graph, is not uniquely determined.

List productions appear in the syntactic grammar as follows:

List ::= List List

73

This special form is recognized by the parser as a special case of interest for list

productions, so that the list is may be restructured and represented as a balanced tree. It

is also directly useful for specifying attributes because attributes for this production may

be defined just as for any other production in the grammar. We allow both synthesized

and inherited attributes to be defined for list productions just as for normal productions

in the grammar:

List ::= List List {
List[O].synth =func (List[ll.attr, List[2].attr);
List [l].inh func (List [O.attr); }

The usual deeply nested tree representation of list structures, such as declaration

and statement lists, is one source of long attribute dependency chains in an attribute

grammar. In modifying the parsing formalism for list structures, we have made it

possible for the compiler write to solve this problem. However, because the grammar

is ambiguous, special attention is required from the compiler writer to construct an

unambiguous description of the language semantics.

Using List Productions

We describe two techniques for parallel algorithm design that can be expressed directly

in the attribute grammar using the list productions.

The first technique is divide-and-conquer. If a large problem can be divided into two

nearly equal size subproblems that can be solved in parallel, and whose results can be

combined quickly, a viable parallel algorithm results. Because the lists are represented

as balanced trees, their structure provides a natural vehicle for this technique. Static

semantic analysis and instruction selection2 of independent declarations, statements and

subexpressions cleanly fit this model. Divide-and-conquer algorithms can be expressed

2 But not the computation of where to put the instructions.

74

directly in the attribute grammar and are well suited to a formal complexity analysis.

For example, if combining subproblem results requires 0(log n) parallel time, and the

subproblems at the leaf items can be solved in O(log n) time, then divide-and-conquer

requires only O(log2 n) time and O(n) processors.

Parallel algorithms based on the technique of parallel prefix [Ladner and Fischer,

1980] are useful for a number of problems arising in code generation, and can also

be expressed directly in an attribute grammar. The simplest form of parallel prefix

algorithms3 can be used to allocate and assign memory locations to instructions and

data, to compute the size and layout of aggregate data types, and to compute the 'next'

code location for each statement in a list.

Parallel prefix can also be used to detect attempts at forward identifier references in

static semantic analysis, by computing the number of tokens preceding each declaration

tree node. A forward reference is detected when there are more tokens preceding the

definition than preceding the use. Combined with algorithms for scope analysis based on

upward remote aggregates that do not detect erroneous forward references, an efficient

parallel static semantic analysis is possible.

Code Generation

Cce generation is not a focus of the dissertation, mainly because the problem is not

too difficult: code for sepaiate statements, basic blocks, and procedures can be gener-

ated nearly independently, thus proving ideal for parallelism. Existing techniques for

incremental code generation similarly parallelize in a fairly straightforward way.

Code generation by coagulation [Karr, 1984] is a technique for bottom-up instruction

selection that can be expressed as a divide-and-conquer style computation, and is there-

fore ideal for a parallel implementation. Graham-Glanville code generators are based

'Using the associative integer addition operation.

75

on parsing technology for instruction selection, and our parsing techniques could be

applied to these algorithms as well to provide very fine-grained parallel code generation.

Perhaps the biggest obstacle to incremental code generation at a fine grain is the

requirement that the code for a procedure be contiguous. This requirement is rarely

a result of a conscious design decision by the compiler developer, but a result of a

historical bias from sequential compilers, in which it is easiest to generate continuous

code. However, changing a small section of code near the beginning of a large procedure

should not require the later sections of the procedure to be reprocessed merely because

the early statements require more memory space. For the same reasons, this can be a

difficulty with parallel code generation as well. While techniques such as parallel prefix

can be used to compute the appropriate code positions after instructions have been

selected to cause a procedure to fit into contiguous memory, these techniques are not

appropriate in an incremental context because they preserve few old code positions.

We see the code location problem, and the related data location problem, as special

cases of parallel memory allocation. The problems are special cases only because known

memory size distributions on basic blocks could be used to design an especially efficient

allocator for the problem. Indeed, a parallel memory allocator is a crucial part of the

library for a shared-memory application environment, and a number of researchers have

investigated appropriate algorithms. We do not survey their results, but only note that

their results are directly applicable to this problem.

4.2.2 Symbol Tables: Upward Remote Aggregates

Long path lengths are also generated by the description of symbol tables. Symbol tables

introduce two different types of long paths in the attribute graphs. First, a symbol table

itself is passed throughout an entire scope, so it may be used everywhere. The obvious

method for passing symbol tables throughout a scope, by copying the symbol table

76

attribute to each node, imposes a linear depth dependency subgraph; this is due to the

linear depth with which lists of declarations are represented. Second, the symbol table is

typically built in an inherently sequential way for a single scope, adding each declaration

to a symbol table to create a slightly different referencing environment for the next

declaration. A symbol table described in this way generates a linear depth dependency

graph, in which declarations are added one by one to create a linear succession of symbol

tables.

Most implementations of scope in compilers create a different version of the symbol

table after each declaration. This appears to be necessary in languages such as Pascal,

where each declaration introduces a new contour [Garrison, 1987], or referencing envi-

ronment. Furthermore, these symbol tables are sequentially computed, one after the

other in the order that the declarations appear in the source. This seemingly inherent

sequentiality of symbol table maintenance appears in both ad-hoc and formal methods

for semantics.

The attribute grammar in Figure 4.1 illustrates the essence of these two key prob-

lems. The only potential parallelism in this symbol table maintenance scheme is that

different non-nested scopes and statements in different scopes may be processed simul-

taneously.

Without modification, this attribute grammar requires linear time to process the

attributes representing the symbol table when only a single declaration is changed. The

reason is that the parse tree is of linear depth for a list of declarations, and the attribute

dependency graph is therefore also of linear depth.

The deep dependency graph is a serious impediment to parallel semantic analysis.

A naive evaluation of the attribute grammar must traverse the depth of the dependency

graph sequentially. A linear depth dependency graph imposes a severe sequential con-

77

Program

Blc Block Block.env-in nil}

* "BEGIN" DeclList "DO" StmtList "END"
{DeclList.env-.in :=Block.env-.in;

DeclList StmtList.env :=DeclList.env-.out}
* <empty>

{DeclLis..env-.out :=DeclList.env-.in}
IDeclList Decl

f DodlList [1) .env-.in :=DodList [0).onvin;
Docl.onv :=DoclList[l).nv-.out;

StintList DoclListEO] .onv-.out := Docl.onv-out}
* StintList Stint

t SitList~l) .Glv : StintList[O] .env;
Stint~env :- StintListEO].onv}

I <empty>
Dod * id " d tCheckUso(id[2));

Docl.onv-out :- AddDocl(
Docl.oenv, id [1),
ExtractDof(id[2), Docl.onv)) I

Stint
* id ExtractDof(id, Stint.onv)}
I Block

(Block.onv-in := Stint.onv}

Figure 4.1: Simplified Grammar for Pascal Scopes

78

* Program

Blockk

* "BEGIN" DeclList "DO" StitList "END"
{DeclList.env-.in :=Block.env..in;

Del~stStmtList.env :=DeclList.env-.out}
* Deci Decl.env :=DeclList.env-.in;

DeclList.env-.out :=Decl.env-.out}
IDodlList DodlList

{DodlList[El].env-.in DecdList [0].env.in;
DeclList[2] .env-.in :=DeciList[l) .env-.out;

Stt~stDeclList[O].env-.out :DeclList2.env-.out I
Stin~istStintList StintList

tStmtList[l].env :=StintList[0].env;
StintListE2).env :StiutList[o).env I

I Stint
De{ Stmt.env :=StmtList.env}
Deciid "" tCheckUse(id[2));

Docl.onv-.out := AddDecl(
Decl.oenv, id [1
ExtractDef(idE2), Decl.env)) I

Sttid ExtractDef(id, Stmt.env)}

Blc Block.env-.in :=Stmt.env}

Figure 4.2: List Productions

straint on symbol table analysis, and therefore on the entire compilation;'by Amdahl's

law, this limits effective parallelism to some small constant.

Using list productions, we can express these semantics in a way that allows more

parallelism. The attribute grammar formalism is not modified, except to use the usual

method for describing attributes on the special list productions. With list productions,

the depth of the parse tree is only logarithmic in the length of a declaration list.

This transformed grammar is superior in a crucial way: different statements in the

same scope may be processed simultaneously. However, this grammar still suffers from

a sequential processing of declarations. Even though the depth of the parse tree has

been reduced to O(log n) for the declarations in a single scope, the attribute graph has

not been reduced in depth.

79

The reason is that a symbol table is passed from declaration to declaration and a

linear chain of different scopes are sequentially dependent. To evaluate the attributes

as written, the symbol table must be passed from one declaration to the next for mod-

ification, in order. We can take some advantage of the structure of the problem space

to improve the situation slightly without changing the formalism. The symbol table is

actually modified in only one place:

Deci.envout :- AddDecl(
Decl.env, id l],
ExtractDef(id [2), Decl.env))

However, this is equivalent to

Decl.env-out := MergeEnvironments(
Decl. env,
NewEnvironment(id [l; ExtractDef (id [2], Decl. env));

where NewEnvironment creates an environment with a single binding, and MergeEn-

vironments combines the bindings from two environments. Because MergeEnvironments

is associative we can transform the grammar into one that uses parallel prefix to com-

pute the environments. A grammar using parallel prefix describes an equivalent dpen-

dency graph among name-value bindings. To be evaluated directly would still require

a sequential linear number of evaluations though, because each singleton environment

constructed depends on all of the declarations to its left.

Consider what would happen if we allow the environments to be evaluated lazily;

that is, the environment is constructed before the binding values of its identifier is com-

puted. In this way, the environment is treated as a collection of attributes rather than

a single attribute. This could be accomplished by placing a Multilisp-style future [Hal-

stead, 1985] around the value computation where a singleton environment is created for

a declaration, instead of waiting for the environment from the left to become available.

80

Because futures are functional, they do not influence the semantics of the computation.

The advantage is that the set of bindings (with lazy values) could be constructed in

parallel, because their interdependency does not constrain the computation of the ref-

erencing environment. After this is done, the only constraint to the parallelism is the

actual dependency graph between declarations. In this way, the symbol table ceases to

be a sequential constraint.

This lazy evaluation is one form of separation between dependency graph construc-

tion and dependency graph evaluation, and is the crucial insight into our algorithms for

semantic analysis. This technique effectively separates determining wlere each identifier

is defined (i.e., computing the naming environment) from determining what the value

of its definition is and where it is used. It allows us to efficiently construct the environ-

ments before computing the values associated with the bindings. Such a separation is

necessary for efficient parallel (and therefore parallel incremental) semantics.

If MergeEnvironments takes 0(1) time using O(n) processors, then this environment

can be computed in O(log n) time using O(n 2) processors. (Merging environments with

this expected time complexity can be accomplished using a hash table representation of

the environments.)

The 0(n 2) processors utilized in the construction of the lazy environments is unac-

ceptably large. Note that the symbol table for a language that allows arbitrary forward

referencing, such as Modula-2, can easily be processed using a variant of this technique

in O(logn) time using O(n) processors. The reason is that the upward pass, merging

environments, is more efficient than the downward pass, where many large environments

are created. The downward pass is used to compute the contour after each declaration

in a scope. Modula-24 does not need the downward pass, because a scope is a single

referencing contour [Wirth, 1982].

4At least, its original definition.

81

This optimization, in the non-incremental case, can be extended for languages such

as Pascal, where each declaration does introduce a new scope. The trick is to process

the symbol table the same way as for Modula-2, creating a single contour containing

all of the local declarations, and use a separate technique for detecting and preventing

forward references. One such technique is to assign sequence numbers to all declarations

in a scope, and emit an error message if the searched identifier has a higher sequence

number than the current declaration (i.e. it is an attempted forward reference). These

sequence numbers can be created in O(logn) time using O(n/logn) processors using

the simplest version of parallel prefix; these computations can be expressed directly in

the attribute grammar.

The incremental case is more difficult. First, forward references cannot be efficiently

disallowed using sequence numbers, since this would cause a large number of sequence

numbers to change when one early declaration changes. We do not attempt to solve

this problem; languages generally disallow forward references because language design

is based on the available compiler technology. We are introducing a new compiler

technology that relaxes this language constraint.

This ambiguity in the parse tree representation of a list introduces the unfortunate

possibility that two parse trees, while structurally different, represent the same pro-

gram. After a small incremental change to a program, the parse tree representation

may be drastically altered. Consider the case in which a user edits comments within a

declaration list: the declaration list may be reparsed into a totally different balanced

representation of the same declaration list. We efficiently handle this case by extending

the attribute grammar formalism so it is less sensitive to the local structure of the parse

tree, using a combination of the ideas of upward remote references [Reps et al., 1986]

and zqgregate values [Hoover and Teitelbaum, 1986].

Languages that disallow forward referencing are much easier to implement as se-

82

quential, hand-crafted compilers. On the other hand, we have seen that languages that

allow forward referencing are much easier to implement as parallel compilers. This is

one reason to prefer forward referencing in language design on the basis of its impact

on parallel compiler design.

We solve these problems in a more formal way by introducing upward remote.aggre-

gate attributes. These special attributes, appearing at the top of the subtree represent-

ing a scope, are used to represent the symbol table for that scope. These aggregates

may be referenced anywhere within the scope without copying the entire symbol table

to a local attribute. Because the aggregates may be referenced nonlocally, the long

chains of copies of the symbol tables are avoided. Also, we allow the declarations to be

added to the aggregate in any order, as well as simultaneously; this avoids the sequential

constraint of processing declarations in order.

Specifying URAs

It is desirable to have a single representation for the dependency graph among attributes,

rather than having some represented implicitly as futures, so that we may efficiently

schedule based on the structure of the whole dependency graph. We therefore consider

the referencing environment primitives as a special part of the attribute grammar for-

malism. Referencing environments, or scopes, can be constructed in one pass, without

regard to the values of the bindings. Because the bindings in the definitions are not

evaluated, the environments themselves can be constructed in parallel without regard

to the interdependence of their values.

The primitives available in the attribute grammar are:

Aggregate := EMPTY;

This defines an aggregate value that contains only what is added to it through

83

remote upward references. The name on the left-hand side is the name of the scope.

This primitive is used to create the outermost scope of an implementation module or

the outer scope for a local module. To add something to the aggregate, the following

form is used:

Add(up(Aggregate), Key, Value);

This declares the aggregate to contain, in addition to what may be added elsewhere,

an association between 'Key' and 'Value'. This may appear anywhere in the subtree of

the parse tree that contains the definition of the aggregate, but not within the subtree

of another aggregate of the same name lower in the parse tree. Thus, the primitives

implement the concept of nested scopes. We restrict 'Key' to be a string value computed

by strict synthesis, so that it may be computed and maintained during parsing. In the

description of languages such as Pascal and Modula-2, these keys appear as values in

the leaf symbols for identifiers being defined.

Nested open scopes can be described'by creating a new scope whose default defini-

tions for identifiers are inherited from another scope.

Aggregate := Inhert(up(Aggregate));

These default definitions may be overridden by adding associations, as before. In a

typical use of aggregates to represent symbol tables, the name of the remote aggregate

is the same as for the local aggregate.

Values may be extracted from an aggregate by key. As before, the key is a string

that must be available as a strictly synthesized value:

Value := Lookup(up(Aggregate), Key);

This retrieves the definition of key in the lowest ancestor in the parse tree that

contains a definition for the named aggregate.

84

Unlike other definitions of aggregate values, our symbol tables are "stateless," do not

imply any ordering of the execution of the primitives, and do not require user-defined

retractions to implement incremental processing. On the other hand, our primitives are

less general than those that allow implementor-defined retractions because our symbol

table primitives are tuned to the needs of a particular language definition (the language

described by our example grammars). Because the form of the primitives is so restricted,

we are able to implement the retractions in the compiler-generating system rather than

requiring their definition by the language implementor. However, we believe that these

primitives can easily be extended to support a wider class of languages.

Using URAs

We have given a sample grammar for the scoping structure of Pascal. We now rewrite

the grammar using upward remote aggregates. Note that there is one crucial difference

between the semantics described by this grammar and the previous examples: this

grammar allows forward referencing. The techniques we.have introduced would only be

complicated by the need to check for forward references to give error messages.

This is a difference between what is easy to implement in parallel and sequential

compilers. Sequential compilers are much simpler if the language does not allow forward

references, but just the opposite is true of parallel compilers. Just as language design has

historically been influenced by the compiler technology available, this is an argument to

allow forward referencing in languages whose compilers may be parallel. Since there is no

reason other than convenience to the compiler writer (at the expense of the programmer)

to disallow forward references in a compiler, we will concentrate our attention on a

variant of the example language that allows forward references.

Using the URA primitives, the example grammar, now allowing forward references,

can be written as in Figure 4.3.

85

Program
m Block f LocalSymbols := EMPTY I

Block B "BEGIN" DeclList "DO" StmtList."EN"
{ LocalSymbols := Inherit(up(LocalSymbols)) }

DeclList
Decl
DeclList DeclListStmtList'
StmtList StmtList
StmtDecl : id ":" fdKey Id[11;

Type Lookup(up(LocalSymbols), id[2];
Add(up(LocalSymbols), id[i], Type }

Stint
tt id { Type := Lookup(up(LocalSymbols), id }

Block

Figure 4.3: Sample. Grammar using Upward Remote Aggregates

4.3 Implementing URAs

Without loss of generality, we consider only a single aggregate name appearing in the

grammar, as in the sample grammar. This simplifies the exposition, and these algo-

rithms easily extend to multiple aggregates. Since the grammar has a constant number

of aggregates, the algorithms described here could be modified to process them simul-

taneously or sequentially.

The 'normal' attributes of the attribute grammar may be implemented in a con-

ventional way, even though the grammar is.ambiguous. However, the upward remote

aggregates require special attention. Because the symbol dependency links are nonlocal,

it is not possible to process them in a purely local way.

The basic strategy will be to maintain a search structure at each tree node for

which the attribute grammar contains an aggregate definition. This structure will be

constructed or updated in one phase to create a description of the referencing environ-

ments, and another phase will link references with definitions. By updating the data

struccure describing the set of available definitions at each point in the program before

86

we process the references, we avoid the problem of using symbol definitions before we

knot the cor:ct scope in which to search for-them.

Each symbol table entry is a special kind of attribute in the attribute grammar.

Rather than being associated with a parse tree node, it is associated with an aggregate

and a key, or name by which the search structure is indexed. Each entry is dependent

on the attribute of its definition, and each reference to the identifier is dependent on it.

While the parse tree is traversed recursively and in parallel to update the symbol.

dependency links, the searching procedures maintain a pointer to the current (that

is, lowest ancestor) aggregate so the appropriate search structure for the contour is

immediately available. All identifier references are to entries in the local symbol table;

even identifiers from an enclosing scope are entered on the.local symbol table and placed

on the dependency list of the definition in the outer scope. The aggregate attributes

themselves (i.e., the 'symbol tables) do not appear in the constructed dependency graph,

but are used only to coordinate the construction of the dependency graph among the

symbols.

Semantic analysis proceeds in distinct phases: First, purely synthesized attributes

from the attribute grammar are computed, providing attributes that will be used as keys

in the list comparison algorithm and for aggregate element names. These attributes may

be maintained during parsing. Next, the parse trees (old and new) are traversed and

compared to enumerate changes to the scoping structure and set of definitions in the

program, and the symbol tables are updated to reflect these changes. Following this, the

symbol table correctly and completely reflects the identifiers defined in each contour.

In addition, each attribute in the aggregate is linked to its defining attribute.

Then, the parse trees are once again compared, but this time to determine how the

set of identifier references have changed. The attribute dependency list of each attribute

87

in the aggregate is updated to contain exactly the set of references to that definition

that appear within that scope.-

These latter two phases construct the inter-symbol dependency graph. Together

with the attribute dependency graph, this forms a directed acyclic attribute dependency

graph5 that is subsequently scheduled for evaluation. This section is concerned primarily

with the maintenance of the inter-symbol dependency graph.

4.3.1 Representing the Aggregate

Aggregate attributes in the attribute grammar are represented by a specialized data

structure in the parse tree, described in pseudocode in Figure 4.4. These aggregates are

not part of the attribute dependency graph in the usual sense, but are containers for the

remote aggregates that are linked into the dependency graph. Each aggregate contains

a pointer to the parent aggregate (i.e., the aggregate higher in the parse tree with the

same name), the type of relationship with the parent (i.e., open or closed scope), and a

search strcture that contains the name-attribute pairs.

The aggregate attribute, or symbol table, for each contour contains a concurrent

search structure for the names defined or used within the scope, and a pointer to the

symbol table for the parent scope. Each symbol entry within the scope contains a list

of dependent attributes.

Every symbol reference within the contour is treated as a reference to a symbol

definition in the search structure for the contour. Thus, identifiers that are defined in

the outer scope are entered in the local scope, and a dependency link is created between

the local and parent entries. The only other type of dependency is the upward remote

aggregate reference, which is a dependency attribute attached to a tree node.

'It is possible, given an erroneous program, to have a cyclic dependency graph. This problem is
discussed "n a later section on error detection and recovery.

88

type
attribute-.value =record

(* place to store the attribute data *
prerequisites: concurrent list of -attribute-.value;
dependents: concurrent list-of -attribute-.value;
case type from

tree-.node => node: -parse..tree-.node;
symbol => table: -scope-.value,

entry: ^scope-.entry;
end;

scope-~entry =record
lock: semaphore;
name: string;
value: attribute-.value;
end;

scope-.value =record
parent: -scope-.value;
scope-.type: (open, closed);
values: concurrent search structure of -scope-entry;
imports: set of -scope-.entry;
childrenL: set of -scope-.value;
end;

Figure 4.4: Aggregate Data Structure

89

References to symbols from enclosing scopes, in the case of a scope that imports

definitions from its parent, are treated specially. An entry is placed in every scope

between the defining scope and the referencing scope. Each of these import entries is an

attribute in the dependency graph that depends on the parent's definition and on which

references within the scope depend. Thus, all references within a scope go through the

local symbol table.

To support incremental updates, we store in the aggregate a list of the imported

symbols. This list contains a pointer to the attribute in the local symbol table for each

imported symbol that was referenced within the open scope. The import list for a closed

scope is, by definition, empty. When a scope is deleted, this list will be used to avoid

traversing the entire scope to delete references to the parent scope.

4.3.2 Updating the Symbol Table

The symbol dependency links are maintained in two phases. The first updates the links

between definitions and their symbol table entries. The second updates links between

symbol references and the definition attribute in the aggregate. This section describes

the first of these two phases.

The symbol table is updated during a parallel recursive comparison and enumera-

tion of the parse trees, using the algorithm described in the previous chapter. Where

the grammar writer has provided purely synthesized Key attributes, the algorithm will

use these keys to determine what nodes are to be considered changed. This is pri-

marily useful to the compiler writer in declaration lists to allow tree comparison to

identify changed procedures, and allows the procedure body and nested declarations to

be processed incrementally.

The recursive comparison procedures are modified to maintain, as a parameter,

a reference to the lowest enclosing aggregate. Thus, the search structure in which

90

all definitions should appear is immediately available. When the symbol tables are

referenced, it is sometimes necessary to modify the enclosing scope. Modifications are

needed in the parent scope during this phase because the insertion of a definition can

override an imported definition, and the dependency link with the imported definition

needs to be removed.

When a symbol table entry is being modified, it is locked using a semaphore associ-

ated with the entry. To prevent deadlock, locks are acquired from the innermost to the

outermost scope being modified, in order. When it is necessary to modify the symbol

table entry for the parent scope, the local scope's entry for that key is locked first. This

rule also applies to the later phase that updates the references to each identifier.

Inserted and Deleted Scopes

When the tree comparison routines encounter a parse subtree that is new and whose

root contains an aggregate attribute, a new aggregate data structure is created and

linked with the parent scope. The contents (subtrees) of the scope are then traversed

to enumerate all declarations and add them to the aggregate. Since the scope is new,

there is no special processing required for imported identifiers; these will be processed

as symbol references in the following phase.

During this traversal, any subtrees that are encountered that also have aggregate

definitions are similarly handled, recursively, to create any new nested aggregates.

An entire scope is considered deleted when its scope head, the defining occurrence

of the aggregate attribute in the old tree, is removed from the parse tree by the user's

edits. Since the scope contains a list of imported identifiers, these are enumerated and

the dependency link with the enclosing scope is removed for each one. Traversal is

required no deeper in the parse tree, since this imports list localizes the interaction with

91

the upper portions of the parse tree. Once these imported definition links are removed,

there are no remaining dependence links between the new parse tree and the deleted

subtree.

When a reference is deleted to a definition from an enclosing scope because of the

deletion of a scope.that imports that definition, the enclosing scope's entry is locked

and checked to see if it, too, is an imported definition and if this is the sole remaining

eference to it. If this is the case, the imported definition is recursively removed from

the grandparent's scope as well. This is done on up the tree until the source definition

for the identifier is reached, in which case it remains in its local aggregate.

Changed Scope: Inserted and Deleted Declarations

Changed scopes are the most interesting. This is the case when the tree comparison

routines discover that the tree node that contains an aggregate definition has been

changed from the previous version of the parse tree. When this happens we need to

identify the set of definitions from the scope that were deleted, inserted, and changed,

and update the aggregates to reflect this information.

Newly inserted declarations are added to the definition list in the current scope.

If there is already an imported definition, that import reference is removed from the

enclosing scope and the imported definition is removed from the list of definitions for

the symbol and from the imports list of the scope. As before, the removed import may

be recursively removed from enclosing scope's aggregates.

A deleted definition is removed from the definition list of the key in the current

scope. If it is the last definition for the key and there is a reference to the attribute

on the list of its dependents, then it is automatically made a reference to a definition

from the enclosing scope. If there is no definition in the enclosing scope, one is created

92

and imported from its enclosing scope. This repeats upward through the symbol tables

until a closed scope is encountered, at which point error recovery is invoked, as described

later.

When a changed declaration is encountered, the symbol table entry is modified to

remove the old definition and insert the new one. The tree comparison routine will then

recursively compare deeper in the parse tree below the declaration.

This is the place where the benefit of using keys in the list comparison routines.

becomes most apparent. If not for the keys, a changed declaration would appear as a

deletion and an insertion. While this would be correctly compiled, it would be at great

expense, because the declaration may be a procedure with a large enclosed scope. By

using the keys, we detect most cases when a scope has changed little.

4.3.3 Updating the Dependency Links

The second phase similarly traverses the parse tree, creating for each symbol table entry

a list of its references in the tree. When an identifier that is referenced in the program

is seen by this phase, the compiler can quickly determine the corresponding definition

by looking it up in the immediately enclosing aggregate or, failing that, in more global

aggregates of an open scope. This phase is a straightforward enumeration of the symbol

table references. Deleted and inserted references are put on the symbol's reference list.

Special care must be taken to maintain the invariants of the aggregates. When a

reference is made to a symbol not in the current context of an open scope, an entry is

made and an implicit import is linked to the enclosing scope, recursively as before. When

the last definition is removed from an imported identifier, its entry in the aggregate and

the dependency link to the enclosing scope is removed.

At the completion of this phase, the symbol table contains all of the dependency

links involving attributes in the aggregate.

93

4.3.4 Evaluating the Dependency graph.

The final phase of semantic analysis evaluates the attributes of the compound dependency

graph, the union of the attributes from the attribute grammar and those involving the

aggregates. This dependency graph may be used to schedule evaluation of the attributes

using a parallel variant of the standard topological sort algorithm [Aho et aL, 1974].

If each processor is kept busy when there are tasks available, the time required to

evaluate this dependence graph is guaranteed to be within a constant factor6 of an

optimal schedule [Graham, 1976]. Thus, the time to .perform semantic analysis using

this technique is dependent only on the depth of the semantic dependency graph, which

is the best we can hope for.

4.3.5 Error detection and recovery

There are three main types of errors that can be detected by the symbol table mainte-

nance phases of semantic analysis. There are multiple definitions, undefined references,

and circular definitions. In addition, the symbol table-maintenance scheme described

here must construct a consistent description of even erroneous programs, to enable

future corrections to bring the tables into a consistent state.

To express multiple declarations, each symbol maintains a list of definitions. Al-

though this list will be of length one for correct programs, programs with multiple

definitions may be expressed consistently in the symbol table. Thus, the compiler is

able to incrementally compile a program whose last version was semantically incorrect.

So that these cases can be efficiently located and reported to the user, a list is

maintained at each aggregate (not shown in the pseudocode for clarity) of all multiply

defined and undefined symbols, and a count of all errors occuring anywhere within the

'The constant is, in fact, two.

94

scope. The list of errors can be enumerated in linear sequential time' to inform the

users of these errors. Undefined symbols in an open scope are handled by importing

a definition from the parent scope. In a closed scope an unidentified symbol causes a

dummy definition to be inserted, and this definition is made to depend on an entry on

the list of errors. When a definition is removed from a multiply defined symbol, or a

definition is provided for an undefined symbol, or the last reference is removed to an

undefined symbol, the entry is removed from the error list. Thus, a program with no

multiply-defined and no undefined symbols will have an empty error list.

The final form of error that car. be detected by symbol table analysis is circular

definitions of attributes. This is detected during scheduling of the evaluation of the

attributes, when there remain attributes to evaluate in the graph, yet the ready list is

empty and no processors are busy.

4.3.6 Complexity

The data structure used to represent aggregates plays an important role in the com-

plexity of semantic analysis. We require a search structure that uses space linear in the

number of elements and allows significant concurrency in the operations. Lock-coupling

tree schemes satisfy the linear space requirement, but allow only O(log n) simultaneous

operations. The two-level hash table described in Chapter 2, Figure 2.4.3, allows p

processors simultaneously, but its space requirements are linear in the number of pro-

cessors. The sibling trie [Parker, 1989] is suited to .this application, requiring only O(n)

space and O(logn) time per operation. We will assume the use of this data structure

for the representation of search structures in the aggregates.

Symbol table maintenance is limited only by the depth of the parse tree. Since

each symbol table operation may have to traverse the symbol tables from the deepest

7There is no reason to report errors concurrently, since users can only process then one at a time.

95

search structure to that at the root of the tree, and using the 0(logn) program depth

assumption discussed in the parsing chapter, each operation on a symbol may require

a total of 0(log2 n) time. These may be performed concurrently .by 0(n) processors,

or by 0(n/logn) processors in 0(log3 n) time. If the program has constant nesting

depth of scopes, this becomes 0(logn) time with 0(n) processors or 0(log2 n) time

with O(n/logn). processors.

Evaluating the dependency graph, on the other hand, is limited only by its depth.

As we discussed in the preVious chapter, the worst schedule requires at most twice

the time of an optimal schedule. We have introduced intermediate definitions at every

scope between a definition and its use in a nested open scope, and these will contribute

at most an additional 0(logn) time (by the nesting depth assumption) to the time

required. Therefore, the time to evaluate the dependency graph is 0(logn) or 0(d)

(proportional to its depth), whichever is more.

For both problems, using incremental techniques reduces the processor requirements

from linear (for non-incremental processing) to proportional to the number of the af-

fected trees and attributes.

4.4 Conclusions

We have presented a new extension to the attribute grammar formalism, upward remote

aggregates, that is suitable for the description of programming languages, and we have

shown how this formalism may be used to construct highly parallel incremental com-

pilers. Our analysis shows that, under some mild assumptions, we can perform symbol

table analysis in polylogarithmic time with a sublinear number of processors. In addi-

tion, we have shown how the use of list attributes may significantly reduce the parse

tree depth and may be used to express parallel solutions to many problems arising in

semantic analysis.

96

5 Conclusions

The goal of this thesis was to provide and analyze algorithms that can be used to develop

parallel incremental compilers with sublinear parallel time complexity. For all phases

of compilation, we have described and analyzed algorithms that exploit fine-grained

parallelism; and, under some mild assumptions about the language and program being

compiled, we have shown that they run in polylogarithmic time using a sublinear number

of processors, thus achieving the goal.

There are two main contributions of this work. First, we describe a new grammar

formalism based upon the use of special list productions that enable a list of items in

the target program to be represented as a balanced tree structure, and extend parallel

parsing algorithms to the incremental case. Together with a control structure in which

every other processor drops out of the computation at each parsing stage, this allows a

more complete and formal analysis of parellel parsing than previous approaches.

The second is a new formalism for expressing the scoping structure of programming

languages using upward remote aggregates. This formalism allows the compiler writer to

express the scoping structure more naturally than previous formalisms, and we present

a strategy for efficiently updating the dependency graph when a program changes.

We have taken the tasks of parsing and semantic analysis, each of which is usually

expressed as a single phase in a compiler design. and divided them up into a number

97

of mutually sequential but individually parallel phases. From the point of view of

algorithm complexity, we have lost nothing by sacrificing this constant factor. What we

have gained is the capability to design much simpler and therefore analytically tractable

phases. This should be the first priority in algorithm design for any problem.

5.1 Parallel Algorithm Design

This thesis is also an extended example of parallel program design for a familiar but

realistically complex problem. Rather than present the design of a single compiler

in detail, we have presented a set of techniques that can be used to construct tools for

building parallel incremental compilers for different languages. Therefore, we have relied

on techniques that are suitable for describing compilers in formal terms. The two main

description languages used were context-free grammars extended with list productions

and attribute grammars extended with upward remote aggregates.

We have applied a number of techniques repeatedly in the design. For example, we

exploit data structures that display the property of order independence: the final state

of the data structure is uniquely determined by the set of operations performed upon

it, independent of the order in which they were performed. Though this may s'ound

obvious as a design principle, the standard sequential algorithms for these problems are

not always order independent, making them difficult to adapt to the parallel case. This

is an important property of concurrent data structures, that enable them to be used

in an algorithm with little need for synchronization; we have used it throughout the

design.

A good example is provided by the implementation of parsers. Conventional LR

parsers compute the canonical derivation of the input string by sequentially applying

productions in order defined by this derivation. This is necessarily a sequential process.

But the restriction is unnecessary for the purposes of parsing strings. This is one place

98

that our design has removed unnecessary sequential constraints from a conventional

sequential problem solution; our parsers are nQncanonical and may perform reductions in

any order, subject only to the restriction that a reduction is delayed until all reductions

have been performed in descendent nodes of the parse tree. This restriction makes it

possible to construct the nodes of the parse tree as the parse proceeds. Furthermore,

reductions in nonoverlapping portions of the parse tree may proceed in any order or

simultaneously. These generalizations of the parsing process have allowed us to exploit

a great deal of parallelism.

Another example is provided by the semantic analysis phase that constructs the

symbol tables. Conventional, sequential algorithms for maintaining the symbol table

require the definitions to be processed in source order, so that a different referencing

environment, which results after each declaration, can be described by modifying the

symbol table from the previous environment. In fact, the problem allows much more

parallelism. The only ordering constraints are that all declarations affecting an iden-

tifier reference be processed before the reference. We have accomplished this simply

by processing all of the definitions before all of the references. Thus, a problem that

has conventionally been treated as one phase is broken into two, exposing significant

parallelism.

Another data structure design technique we have used repeatedly is the reversible

data structure: data structures whose operations and their inverses are available. Data

structures that are reversible help to implement incremental algorithms, where changes

to the problem specification can be reflected in the program state by reversing operations

* on a data structure. This technique was used in semantic analysis for the maintenance

of the symbol tables, where we made extensive use of concurrent search structures.

The parser is also a good example of this technique. We consider parsing to be the

process of taking a list of symbols, initially containing only terminal symbols (or tokens)

99

and performing reductions on sublists, replacing the sublist with a nonterminal symbol.

When this process terminates, the symbol list has been reduced to the start symbol and

the program has been parsed. With this slight reformulation of LR parsing, the reduce

operation can be undone simply by replacing the nonterminal symbol with the symbols

below it in the syntax tree. This basic technique provides the insight as to how parallel

parsing has been made incremental.

Symbol table maintenance provides a further example. The data structure repre-

senting the aggregate, or symbol table, maintains the interdependencies between symbol

definitions; the data structure allows definitions and dependencies to be asserted and

retracted in arbitrary order during updates, but the final form of the dependency graph

is dependent only on the set of operations that were not retracted.

Finally, applicative data structures are well suited to both parallel and incremental

algorithms. By constructing new data structures rather than modifying old ones, the

synchronization requirements of mutable shared memory become unnecessary. We have

used applicative'data structures extensively in syntactic analysis, particularly the data

structure applicative concatenable lists.

There are some common threads in the algorithm design as well. The primary design

principle is the top-down division of the translation task into a number of much simpler

mutually sequential translation steps, or phases, each of which is highly parallel. This

adds a constant factor to the running time of the algorithm because of the multiple

passes over the source program, but it simplifies the subproblems sufficiently that they

can be solved in a manner amenable to analysis.

Within the individual phases of the compiler, we have relied heavily on the techniques

of parallel divide-and-conquer. Algorithms that use this technique can be designed to

exploit parallelism to a very fine grain. In addition, there are programming systems

I

designed specifically for this class of algorithms that automatically cluster tasks into

groups suitable for the host architecture, making divide-and-conquer algorithms efficient

for a wide variety of architectures.

5.2 Programming Languages

Historically, the programming language design has been heavily influenced by the tech-

nology available for developing compilers. The technologies introduced by this work

imply some changes in the constraints imposed upon the language designer. The lexical

structure and syntactic structure of the language should have locality, that is, the com-

piler should be able to find its place in the program without reading much of it. For

lexical analysis, for example, it helps to limit line length and disallow comments and

string constants that cross line boundaries. We have seen how this property can make

parallel scanning and parsing much more efficient.

Our techniques for semantic and scope analysis remove from the language designer

the constraint that forward referencing should be disallowed. While such restricted

languages are easier to implement in sequential compilers, exactly the opposite is true

for parallel compilers. In addition, the improved compilation time resulting from the

use of parallelism in the compiler may make it practical to reconsider language and

compiler features that were previously considered too time consuming.

5.3 Practical Considerations

The granularity of parallelism is an important factor affecting the speedup a parallel

algorithm can achieve; it is the amount of processing given to a single processor. If

the task is to be distributed among a large number of processors, the granularity must

necessarily be fine. However, there is usually some communication and synchronization

overhead to a parallel implementation that depends on the host machine's architecture,

101

so there are disadvantages associated with too fine a grain. In addition, the naive

strategy of creating a separate process for every potentially parallel task has much too

high an overhead to provide a practical implementation. The grain.of parallelism should

be no finer than necessary to use the available number of "processors.

If a very fine granularity is identified, then the grains can usually be grouped dy-

namically in the implementation to achieve a granularity appropriate for a particular

compilation. For this reason, it is generally useful to identify parallelism at the finest

grain possible. This is the approach that we have taken in our algorithm design; we

place the burden of making this efficient upon the implementor of the parallel program-

ming environment in which the compiler resides. Vandevoorde's WorkCrews [1988] is an

example of a programming library supporting this paradigm. The scheduling strategy

employed by WorkCrews also improves the locality of data for computations that are

scheduled on the same processor.

5.4 Impact on Programming Environment

The reduced compilation time resulting from a synthesis of parallel and incremental tech-

niques in the programming environment would cause a shorter programming/debugging

cycle, and a resulting increase in programmer productivity. Language and compiler fea-

tures that are now considered too expensive on the basis of increased compilation time

may well become practical.

Perhaps the most important impact of this work in the future may be the practical

application of fast incremental compilers to a fully integrated environment, in which

debugging actions can be expressed in the source language without destroying the pro-

gram's execution state.

102

5.4.1 Future Work

We have only begun to scratch the surface of the problems discussed in this thesis. In

every direction, there are interesting open problems.

We have described a property of the syntactic structure of programming languages,

syntactic locality, that enables efficient parallel parsing. We have not explored the

formal properties of syntactic locality, which would be useful for the language designer,

but we have seen its impact on the complexity of parsing. This, and parse tree depth,

limit the number of processors that can be used to parse efficiently.

An implementation of the parser described here would be useful to measure its per-

formance relative to sequential techniques, to measure the interaction of parallel and

incremental parsing, and to measure the impact of list productions and various language

and grammar features on the parsing efficiency. Is there a simple characterization of

locality that allows us to design languages for efficient parallel parsing? An implemen-

tation would also help discover which global control strategies improve the efficiency

of parsing- for instance, when should the processors drop out of the parsing pipeline?

Can these algorithms be extended to LALR(1) or LR(1) formalisms?

There is some overhead associated with dividing programs for parallel parsing; an

implementation would help to discover at what point and to what extent the techniques

described speed up the compilation process. There is also.a question of space efficiency:

the compiler is made incremental by saving intermediate results from previous compi-

lations. Many of the algorithms described have added tag fields to nodes of the parse

tree. In addition, the parallel version of the compiler constructs large intermediate data

structures that are not necessary in the sequential case. It would be nice to know to

what extent these techniques increase the memory requirements of a compiler, and what

are the limitations to the techniques.

103

There are a number of target language features that we have not considered, that

would increase the difficulty of our task. For instance, some language (such as C) have

textual macros that are not lexically scoped that modify the syntax of the language.

We conjecture that an incremental macro preprocessor could be designed to output a

set of changes from the previous compilation.

When designing any parallel program that uses dynamic data structures, it is conve-

nient to -sume the existence of dynamic memory allocation primitives. Their existence

provides us with what we need for many of the tasks in code generation, of which mem-

ory allocation is a subtask. It is not yet clear from the literature how well the known

parallel memory allocation primitives scale. However, a suitable concurrent search struc-

ture with a least-upperbound operation would provide us with the means to implement

an efficient memory allocator. This is a fundamental and important problem, but too

far afield of the thesis topic for a systematic study to be given here.

We have not considered algorithms for parallel code optimization. As a practical

matter, production quality compilers require optimization. Unfortunately, with cur-

rent technology, optimization is incompatible with integrated environments because the

transformation may obscure debugging information and the mapping between the run-

ning program and its source representation. Our algorithms, however, can be used in

the non-incremental case for parallel compilation, and there optimization is a much

more important problem.

104

Bibliography

[Aho et al., 1974 Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman, The Design

and Analysis of Computer Algorithms, Addison-Wesley, 1974.

[Allen, 1987] Stanley Allen, "Parallelization of Compiler Phases on a Multiprocessor

Machine," Technical Report TAMU-87-009, Texas A&M University, May 1987.

[Andre et al., 1981]. F. Andre, J. P. Banatre, and J. P. Routeau, "A Multiprocessing

Approach to Compile-Time Symbol Resolution," ACM Transactions on Programming

Languages and Systems, 3(1):11-23, January 1981.

[Baer and Ellis, 1977] J. L. Baer and C. Ellis, "Model, Design, and Evaluation of a

Compiler for a Parallel Processing Environment," IEEE Transactions on Software

Engineering, 3(6):394-405, November 1977.

[Banatre et al., 1979] J. P. Banatre, J. P. Routeau, and L. Trilling, "An Event-Driven

Compiling Technique," Communications of the ACM, 22(1):34-42, January 1979.

[Beshers and Campbell, 1985] George McArthur Beshers and Roy Harold Campbell,

"Maintained and Constructor Attributes," In Proceedings of the ACM SIGPLAN '85

Symposium on Language Issues in Programming Environments, pages 34-42, July

1985.

105

[Boehm and Zwaenopoel, 1987] Hans-Juergen Boehm and Willy Zwaenopoel, "Parallel

Attribute Grammar Evaluation," Technical Report COMP TR87-55, Rice University,

June 1987.

[Christopher et al., 1981] T. W. Christopher, 0. I. El-Dessouki, M. W. Evens, H. Harr,

H. Klawans, P. Krystosek, R. Mirchandani, and Y. Tarhan, "SALAD - A Distributed

Compiler for Distributed Systems," In Proceedings of the 1981 IEEE International

Conference on Parallel Processing, August 1981.

[Cohen et al., 1982] Jacques Cohen, Timothy Hickey, and Joel Katcoff, "Upper Bounds

for Speedup in Parallel Parsing," Journal of the ACM, 29(2):408-428, April 1982.

[Cohen and Kolonder, 1985] Jacques Cohen and Stuart Kolonder, "Estimating the

Speedup in Parallel Parsing," IEEE Transactions on Software Engineering, 11, 1:114-

124, January 1985.

[Delisle et al., 1984] Norman M. Delisle, David E. Menicosy, and Mayer D. Schwartz,

"Viewing a Programming Environment as a Single Tool," ACM SIGPLAN Notices,

19(5):49-56, May 1984.

[Ellis, 1985] Carla Schlatter Ellis, "Concurrency and Linear Hashing," Technical report,

University of Rochester, March 1985.

[Feiler, 1982] Peter Hermann Feiler, A Language-Oriented Interactive Environment

Based on Compilation Technology, PhD thesis, Carnegie-Mellon University, May

1982.

[Feldman, 1979] Stuart I. Feldman, "Make-A Program for Maintaining Computer

Programs," Software-Practice and Experience, 9:255-265, 1979.

[Fischer et al., 1984] C. N. Fischer, Gregory F. Johnson, Jon Mauney, Anil Pal, and

Daniel L. Stock, "The Poe Language-Based Editor Project," In Proceedings of the

106

SIGSOFT/SIGPLAN Software Engineering Symposiuth on Practical Software Devel-

opment Environments, pages 21-29, May 1984.

[Fischer, 1975] Charles N. Fischer, On Parsing Context-Free Languages in Parallel

Environments, PhD thesis, Cornell University, April 1975.

[Fritzson, 1982] Peter Fritzson, "Fine-Grained Incremental Compilation for Pascal-Like

Languages," Technical report, University of Linkoping, July 1982.

[Fritzson, 1983] Peter Fritzson, "Symbolic Debugging Through Incremental Compila-

tion in an Integrated Environment," The Journal of Systems and Software, 3:285-294,

1983.

[Fritzson, 1984] Peter Fritzson, "Preliminary Experience from the DICE system - a Dis-

tributed Incremental Compiling Environment," ACM SIGPLAN Notices, 19(5):113-

123, May 1984.

[Garey and Johnson, 1979] M. R. Garey and D. S. Johnson, Computers and Intractabil-

ity, A Guide to the Theory of NP-Completeness, W. H. Freeman, San Francisco, 1979.

[Garrison, 1987] Phillip Edward Garrison, Modeling and Implementation of Visibilty in

Programming Languages, PhD thesis, University of California at Berkeley, December

1987.

[Ghezzi and Mandriolli, 1979] Carlo Ghezzi and Dino Mandriolli, "Incremental Pars-

ing," ACM Transactions on Programming Languages and Systems, 1(1), July 1979.

[Graham, 1976] R. L. Graham, "Bounds on the Performance of Scheduling Algorithms,"

In E. G. Coffman, Jr., editor, Computer and Job-Shop Scheduling Theory, chapter 5,

pages 165-227. John Wiley and Sons, New York, 1976.

107

[Graham and Rhodes, 1975] Susan L. Graham and Steven P. Rhodes, "Practical Syn-

tactic Error Recovery," Communications of the ACM, 18(11), November 1975.

[Halstead, 1985] Robert Halstead, "Multilisp: A Language for Concurrent Symbolic

Computation," A CM Transactions on Programming Languages and Systems, October.

1985.

[Hoover, 1987] Roger Hoover, Incremental Graph Evaluation, PhD thesis, Cornell Uni-

versity, May 1987.

[Hoover and Teitelbaum, 1986] Roger Hoover and Tim Teitelbaum, "Efficient Incre-

mental Evaluation of Aggregate Values in Attribute Grammars," In Proceedings of

the ACM SIGPLAN 1986 Symposium on Compiler Construction, pages 39-50, July

1986.

[Horgan and Moore, 1984] J. R. Horgan and D. J. Moore, "Techniques for Improving.

Language-Based Editors," In SIGSOFT/SIGPLAN Software Engineering Symposium

on Practical Software Development Environments. ACM, May 1984.

[Huen et al., 1977] W. Huen, O.' El-Dessouki, E. Huske, and M. Evans, "A Pipelined

DYNAMO Compiler," In Proceedings of the 1977 IEEE International Conference on

Parallel Processing, pages 57-66, August 1977.

[Jalili and Gallier, 1982] Fahimeh Jalili and Jean H. Gallier, "Building Friendly

Parsers," In SIGPLAN Symposium. ACM, June 1982.

[Johnson, 1984] Gregory F. Johnson, An Approach to Incremental Semantics, PhD

thesis, University of Wisconsin at Madison, July 1984.

[Johnson and Fischer, 1982] Gregory F. Johnson and Charles N. Fischer, "Non-

syntactic Attribute Flow in Language Based Editors," In Conference Record of'the

108

Ninth Annual A CM Symposium on Principles of Programming Languages, pages 185-

195, 1982.

[Kaplan and Kaiser, 1986] Simon M. Kaplan and Gail E. Kaiser, "Incremental At-

tribute Evaluation in Distributed Language-Based Environments," In Proceedings of

the A CM Principles of Distributed Computing, pages 121-130, 1986.

[Karr, 1984] Michael Karr, Code Generation by Coagulation, PhD thesis, Harvard

University, May 1984.

[Khanna et al., 1990] Sanjay Khanna, Arif Ghafoor, and Amrit Goel, "A Parallel Com-

pilation Technique based on Grammar Partitioning," In Proceedings of the ACM

Annual Conference, February 1990.

[Klein and Reif, 1988] Philip N. Klein and John H. Reif, "Parallel Time O(log n) Ac-

ceptance of Deterministic CFLs on an Exclusive-Write P-RAM," SIAM Journal on

Computing, 17(3):463-485, June 1988.

[Ladner and Fischer, 1980] Richard E. Ladner and Michael J. Fischer, "Parallel Prefix

Computation," Journal of the Association for Computing Machinery, 27(4):831-838,

October 1980.

[Ligett et al., 1982] Dan Ligett, Glen McCluskey, and W. M. McKeeman, "Parallel LR

Parsing," Technical Report TR-82-03, Wang Institute of Graduate Studies School of

Information Technology, July 1982.

[Lipkie, 1979] D. Lipkie, A Compiler Design for Multiple Independent Processor Com-

puters, PhD thesis, University of Washington, 1979.

[Low, 1988] James R. Low, "Lexical Analysis on a Moderately Sized Multiprocessor,"

Technical Report TR261, University of Rochester, October 1988.

109

[Mickunas and Schell, 1978] M. D. Mickunas and R. M. Schell, "Parallel Compilation

in a Multiprocessor Environment," In Proceedings of the ACM Annual Conference,

pages 241-246, 1978.

[Miller and LeBlanc, 1982] J. A. Miller and R. J. LeBlanc, "Distributed Compilation:

A Case Study," Technical report, Georgia Institute of Technology, 1982.

[Morris and Schwartz, 1981] Joseph M. Morris and Mayer D. Schwartz, "The Design

of a Language-Directed Editor for Block Structured Editors," ACM SIGPLAN, 10,

6, June 1981.

[Myers, 1984] Eugene W. Myers, "Efficient Applicative Data Types," In Conference

Record of the Eleventh Annual A CM Symposium on Principles of Programming Lan-

guages, 1984.

[Park and Burnett, 1979] William T. Park and David J. Burnett, "An Interactive Incre-

mental Compiler for more Productive Programming of Computer-Controlled Indus-

trial Robots and Flexible Automation Systems," Technical report, SRI International,

February 1979.

[Parker, 1989] Jeff D. Parker, "A Concurrnet Search Structure," Journal of Parallel

and Distributed Computing, 7:256-278, 1989.

[Pennello and DeRemer, 1978] Thomas J. Pennello and Frank DeRemer, "A Forward

Move Algorithm for LR Error Recovery," In Conference Record of the Fifth Annual

ACM Symposium on Principles of Programming Languages, January 1978.

[Reps et at., 1986] T. Reps, C. Marceau, and T. Teitelbaum, "Remote Attribute Up-

dating for Language-Based Editors," In Conference Record of the 13th Annual ACM

Symposium on Principles of Programming Languages, pages 1-13, January 1986.

110

[Reps, 1982] Thomas Reps, Generating Language-Based Environments, PhD thesis,

Cornell University, August 1982.

[Sarkar and Deo, 1986] Dilip Sarkir and Narsingh Deo, "Estimating the Speedup in

Parallel Parsing," In Proceedings of the 1986 IEEE International Conference on

Parallel Processing, pages 157-163. IEEE, August 1986.

[Schell, 1979] Richard Marion Schell, Jr., Methods for Constructing Parallel Compilers

for use in a Multiprocessor Environment, PhD thesis, University of Illinois at Urbana-

Champaign, 1979.

[Schwartz et al., 1984] Mayer D. Schwartz, Norman M. Delisle, and Vimal S. Begwami,

"Incremental Compilation in Magpie," In Proceedings of the ACM SIGPLAN 1984

Symposium on Compiler Construction, pages 122-131, June 1984.

[Seshadri et al., 1988] V. 5eshadri, D. B. Wortman, M. D. Junkin, S. Weber, C. P. Yu,

and I. Small, "Semantic Analysis in a Concurrent Compiler," In Proceedings of the

SIGPLAN '88 Conference on Programming Language Design and Implementation,

pages 233-239. ACM SIGPLAN, 1988.

[Seshadri et al., 1987] Venkatadri Seshadri, Ian S. Small, and David B. Wortman, "Con-

current Compilation," In M. H. Barton, E. L. Dagless, and G. L. Reijns, editors, Pro-

ceedings of the IFIP WG1O.3 Working Conference on Distributed Processing, pages

627-641. IFIP, Elsevier Science Pubishers B. V. (Horth-Holland), October 1987.

[Shasha and Goodman, 1988] Dennis Shasha and Nathan Goodman, "Concurrent

Search Structure Algorithms," A CM Transactions on Database Systems, 13(1):53-90,

March 1988.

111

[Skillicorn and Barnard, 1988] D. B. Skillicorn and D. T. Barnard, "Parallel Parsing on

the Connection Machine," Technical Report TR 88-209, Queen's University January

27 1988.

[Stromberg, 1982] Dan Stromberg, "Text Editing and Incremental Compiling," Tech-

nical Report LiTH-MAT-R-82-34, University of Linkoping, Sweden, October 1982.

[Teitelbaum et al., 1981] Tim Teitelbaum, Thomas Reps, and Susan Horowitz, "The

Why and Wherefore of the Cornell Program Synthesizer," In Proceedings of the ACM

SIGPLAN SIGOA Symposium on Text Manipulation, pages 8-16, June 1981.

[Ullman, 1976] J. D. Ullman, "Complexity of Sequencing Problems," In E. G. Coffman,

Jr., editor, Computer and Job-Shop Scheduling Theory, chapter 4, pages 139-164.

John Wiley and Sons, New York, 1976.

[Vandevoorde and Roberts, 1988] Mark T. Vandevoorde and Eric S. Roberts,

"WorkCrews: An Abstraction for Controlling Parallelism," International Journal

of Parallel Programming, 17(4), 1988.

[Vandevoorde, 1988] Mark Thierry Vandevoorde, "Parallel Compilation on a Tightly

Coupled Multiprocessor," Technical report, Digital Systems Research Center, March

1 1988.

[Waters, 1982] Richard C. Waters, "Program Editors Should Not Abandon Text Ori-

ented Commands," ACM SIGPLAN.Notices, 17(7), July 1982.

[Wirth, 1982] Niklaus Wirth, Programming in Modula-2, Springer-Verlag, 1982.

[Yu, 1989] Chun Pong Yu, "Practical Parallel Lexing," Technical Report CSRI-226,

University of Toronto, May 1989.

112

[Zosel, 1973] M. Zosel, "A Parallel Approach to Compilation," In Proceedings of the

ACM Symposium on Principles of Programming Languages, pages 59-70, 1973.

113

